Citation: | ZHENG Qinghe, LIU Fanglin, YU Lisu, JIANG Weiwei, HUANG Chongwen, GUI Guan. A Modulation Recognition Method Combining Wavelet Denoising Convolution and Sparse Transformer[J]. Journal of Electronics & Information Technology, 2025, 47(7): 2361-2374. doi: 10.11999/JEIT241159 |
[1] |
郭业才, 姚文强. 基于信噪比分类网络的调制信号分类识别算法[J]. 电子与信息学报, 2022, 44(10): 3507–3515. doi: 10.11999/JEIT210825.
GUO Yecai and YAO Wenqiang. Modulation signal classification and recognition algorithm based on signal to noise ratio classification network[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3507–3515. doi: 10.11999/JEIT210825.
|
[2] |
张正宇, 何睿斯, 杨汨, 等. 面向6G的无线信道语义特征及建模[J]. 电子学报, 2025, 53(1): 14–23. doi: 10.12263/DZXB.20240595.
ZHANG Zhengyu, HE Ruisi, YANG Mi, et al. Semantic characteristics and modeling of wireless channels for 6G[J]. Acta Electronica Sinica, 2025, 53(1): 14–23. doi: 10.12263/DZXB.20240595.
|
[3] |
张思成, 林云, 涂涯, 等. 基于轻量级深度神经网络的电磁信号调制识别技术[J]. 通信学报, 2020, 41(11): 12–21. doi: 10.11959/j.issn.1000-436x.2020237.
ZHANG Sicheng, LIN Yun, TU Ya, et al. Electromagnetic signal modulation recognition technology based on lightweight deep neural network[J]. Journal on Communications, 2020, 41(11): 12–21. doi: 10.11959/j.issn.1000-436x.2020237.
|
[4] |
孟磊, 曲卫, 马爽, 等. 基于LSTM的雷达脉冲重复间隔调制模式识别[J]. 现代雷达, 2021, 43(1): 50–57. doi: 10.16592/j.cnki.1004-7859.2021.01.008.
MENG Lei, QU Wei, MA Shuang, et al. Radar PRI Modulation pattern recognition method based on LSTM[J]. Modern Radar, 2021, 43(1): 50–57. doi: 10.16592/j.cnki.1004-7859.2021.01.008.
|
[5] |
KONG Weisi, JIAO Xun, XU Yuhua, et al. A transformer-based contrastive semi-supervised learning framework for automatic modulation recognition[J]. IEEE Transactions on Cognitive Communications and Networking, 2023, 9(4): 950–962. doi: 10.1109/TCCN.2023.3264908.
|
[6] |
HU Mutian, MA Jitong, YANG Zhengyan, et al. Feature fusion convolution-aided transformer for automatic modulation recognition[J]. IEEE Communications Letters, 2023, 27(10): 2643–2647. doi: 10.1109/LCOMM.2023.3298941.
|
[7] |
KONG Weisi, YANG Qinghai, JIAO Xun, et al. A transformer-based CTDNN structure for automatic modulation recognition[C]. The 7th International Conference on Computer and Communications, Chengdu, China, 2021: 159–163. doi: 10.1109/ICCC54389.2021.9674558.
|
[8] |
ZHU Xizhou, SU Weijie, LU Lewei, et al. Deformable DETR: Deformable transformers for end-to-end object detection[C]. The 9th International Conference on Learning Representations, 2021.
|
[9] |
ZHANG Qi and DENG Linfeng. An intelligent fault diagnosis method of rolling bearings based on short-time Fourier transform and convolutional neural network[J]. Journal of Failure Analysis and Prevention, 2023, 23(2): 795–811. doi: 10.1007/s11668-023-01616-9.
|
[10] |
ZHOU Jie, MENG Ming, GAO Yunyuan, et al. Classification of motor imagery EEG using wavelet envelope analysis and LSTM networks[C]. Chinese Control and Decision Conference, Shenyang, China, 2018: 5600–5605. doi: 10.1109/CCDC.2018.8408108.
|
[11] |
O'SHEA T J, ROY T, and CLANCY T C. Over-the-air deep learning based radio signal classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 168–179. doi: 10.1109/JSTSP.2018.2797022.
|
[12] |
SATHYANARAYANAN V, GERSTOFT P, and EL GAMAL A. RML22: Realistic dataset generation for wireless modulation classification[J]. IEEE Transactions on Wireless Communications, 2023, 22(11): 7663–7675. doi: 10.1109/TWC.2023.3254490.
|
[13] |
崔凯, 崔天舒, 朱岩, 等. 基于多尺度时序特征的信号调制样式识别算法[J]. 信号处理, 2021, 37(8): 1507–1517. doi: 10.16798/j.issn.1003-0530.2021.08.018.
CUI Kai, CUI Tianshu, ZHU Yan, et al. Signal modulation pattern recognition algorithm based on multiscale temporal features[J]. Journal of Signal Processing, 2021, 37(8): 1507–1517. doi: 10.16798/j.issn.1003-0530.2021.08.018.
|
[14] |
DAI Jifeng, QI Haozhi, XIONG Yuwen, et al. Deformable convolutional networks[C]. IEEE International Conference on Computer Vision, Venice, Italy, 2017: 764–773. doi: 10.1109/ICCV.2017.89.
|
[15] |
NJOKU J N, MOROCHO-CAYAMCELA M E, and LIM W. CGDNet: Efficient hybrid deep learning model for robust automatic modulation recognition[J]. IEEE Networking Letters, 2021, 3(2): 47–51. doi: 10.1109/LNET.2021.3057637.
|
[16] |
WEST N E and O’SHEA T. Deep architectures for modulation recognition[C]. IEEE International Symposium on Dynamic Spectrum Access Networks, Baltimore, USA, 2017: 1–6. doi: 10.1109/DySPAN.2017.7920754.
|
[17] |
LIU Xiaoyu, YANG Diyu, and EL GAMAL A. Deep neural network architectures for modulation classification[C]. The 51st Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, USA, 2017: 915–919. doi: 10.1109/ACSSC.2017.8335483.
|
[18] |
HONG Dehua, ZHANG Zilong, and XU Xiaodong. Automatic modulation classification using recurrent neural networks[C]. The 3rd IEEE International Conference on Computer and Communications, Chengdu, China, 2017: 695–700. doi: 10.1109/CompComm.2017.8322633.
|
[19] |
LU Xiao, TAO Mengyuan, FU Xue, et al. Lightweight network design based on ResNet structure for modulation recognition[C]. IEEE 94th Vehicular Technology Conference, Norman, USA, 2021: 1–5. doi: 10.1109/VTC2021-Fall52928.2021.9625558.
|
[20] |
KE Ziqi and VIKALO H. Real-time radio technology and modulation classification via an LSTM auto-encoder[J]. IEEE Transactions on Wireless Communications, 2022, 21(1): 370–382. doi: 10.1109/TWC.2021.3095855.
|
[21] |
HERMAWAN A P, GINANJAR R R, KIM D S, et al. CNN-based automatic modulation classification for beyond 5G communications[J]. IEEE Communications Letters, 2020, 24(5): 1038–1041. doi: 10.1109/LCOMM.2020.2970922.
|
[22] |
RAJENDRAN S, MEERT W, GIUSTINIANO D, et al. Deep learning models for wireless signal classification with distributed low-cost spectrum sensors[J]. IEEE Transactions on Cognitive Communications and Networking, 2018, 4(3): 433–445. doi: 10.1109/TCCN.2018.2835460.
|
[23] |
XU Jialang, LUO Chunbo, PARR G, et al. A spatiotemporal multi-channel learning framework for automatic modulation recognition[J]. IEEE Wireless Communications Letters, 2020, 9(10): 1629–1632. doi: 10.1109/LWC.2020.2999453.
|
[24] |
HUYNH-THE T, HUA C H, PHAM Q V, et al. MCNet: An efficient CNN architecture for robust automatic modulation classification[J]. IEEE Communications Letters, 2020, 24(4): 811–815. doi: 10.1109/LCOMM.2020.2968030.
|