Citation: | ZHAO Ziwen, CHEN Hui, LIAN Feng, ZHANG Guanghua, ZHANG Wenxu. Multiple Maneuvering Target Poisson Multi-Bernoulli Mixture Filter for Gaussian Process Cognitive Learning[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2724-2735. doi: 10.11999/JEIT241139 |
[1] |
DAI Jinhui, PU Wenqiang, YAN Junkun, et al. Multi-UAV collaborative trajectory optimization for asynchronous 3-D passive multitarget tracking[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5101116. doi: 10.1109/TGRS.2023.3239952.
|
[2] |
DING Lintao, SHI Chenguang, and ZHOU Jianjiang. Collaborative route optimization and resource management strategy for multi-target tracking in airborne radar system[J]. Digital Signal Processing, 2023, 138: 104051. doi: 10.1016/j.dsp.2023.104051.
|
[3] |
RAMACHANDRAN R K, FRONDA N, PREISS J A, et al. Resilient multi-robot multi-target tracking[J]. IEEE Transactions on Automation Science and Engineering, 2024, 21(3): 4311–4327. doi: 10.1109/TASE.2023.3295373.
|
[4] |
KUMAR S and PARHI D R. Multi-target trajectory planning and control technique for autonomous navigation of multiple robots[J]. ISA Transactions, 2023, 138: 650–669. doi: 10.1016/j.isatra.2023.02.029.
|
[5] |
WANG Qiang, HUANG Xiao, TAO Hao, et al. Marine navigation radar multi-target tracking using adaptive innovation sequence-based joint probability data association[C]. 2024 IEEE 13th Data Driven Control and Learning Systems Conference (DDCLS), Kaifeng, China, 2024: 511–516. doi: 10.1109/DDCLS61622.2024.10606901.
|
[6] |
BLACK B, SELLERS T, LEI Tingjun, et al. Optimal multi-target navigation via graph-based algorithms in complex environments[C]. Proceedings of 2024 IEEE 33rd International Symposium on Industrial Electronics (ISIE), Ulsan, Korea, Republic of, 2024: 1–6. doi: 10.1109/ISIE54533.2024.10595682.
|
[7] |
BLACKMAN S S. Multiple hypothesis tracking for multiple target tracking[J]. IEEE Aerospace and Electronic Systems Magazine, 2004, 19(1): 5–18. doi: 10.1109/MAES.2004.1263228.
|
[8] |
MAHLER R P S. Statistical Multisource-Multitarget Information Fusion[M]. Boston: Artech, 2007.
|
[9] |
RONG LI X and JILKOV V P. Survey of maneuvering target tracking. Part I. Dynamic models[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1333–1364. doi: 10.1109/TAES.2003.1261132.
|
[10] |
LI X R and JILKOV V P. Survey of maneuvering target tracking. Part V. Multiple-model methods[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1255–1321. doi: 10.1109/TAES.2005.1561886.
|
[11] |
MAHLER R. On multitarget jump-Markov filters[C]. 2012 15th International Conference on Information Fusion, Singapore, 2012: 149–156.
|
[12] |
LI Xiaolong, SUN Zhi, YEO T S, et al. STGRFT for detection of maneuvering weak target with multiple motion models[J]. IEEE Transactions on Signal Processing, 2019, 67(7): 1902–1917. doi: 10.1109/TSP.2019.2899318.
|
[13] |
MAHLER R P S. Advances In Statistical Multisource-Multitarget Information Fusion[M]. Boston: Artech House, 2014.
|
[14] |
WEI Jingxin, LUO Feng, CHEN Shichao, et al. Robust fusion of GM-PHD filters based on geometric average[J]. Signal Processing, 2023, 206: 108912. doi: 10.1016/j.sigpro.2022.108912.
|
[15] |
HUANG Qiao, XIE Lei, and SU Hongye. Estimations of time-varying birth cardinality distribution and birth intensity in Gaussian mixture CPHD filter for multi-target tracking[J]. Signal Processing, 2022, 190: 108321. doi: 10.1016/j.sigpro.2021.108321.
|
[16] |
DAVIES E S and GARCÍA-FERNÁNDEZ á F. Information exchange track-before-detect Multi-Bernoulli filter for superpositional sensors[J]. IEEE Transactions on Signal Processing, 2024, 72: 607–621. doi: 10.1109/TSP.2024.3349769.
|
[17] |
WEI Jingxin, LUO Feng, QI Jiawei, et al. Distributed fusion of Labeled Multi-Bernoulli filters based on arithmetic average[J]. IEEE Signal Processing Letters, 2024, 31: 656–660. doi: 10.1109/LSP.2024.3364506.
|
[18] |
CAO Chenghu and ZHAO Yongbo. Multi-sensor multi-target tracking with generalized labeled multi-Bernoulli filter based on track-before-detect observation model using Gaussian belief propagation[J]. Digital Signal Processing, 2024, 153: 104618. doi: 10.1016/j.dsp.2024.104618.
|
[19] |
ZHOU Yusong, ZHAO Jin, WU Sunyong, et al. A Poisson multi-Bernoulli mixture filter for tracking multiple resolvable group targets[J]. Digital Signal Processing, 2024, 144: 104279. doi: 10.1016/j.dsp.2023.104279.
|
[20] |
GARCÍA-FERNÁNDEZ á F, XIA Yuxuan, and SVENSSON L. Poisson multi-Bernoulli mixture filter with general target-generated measurements and arbitrary clutter[J]. IEEE Transactions on Signal Processing, 2023, 71: 1895–1906. doi: 10.1109/TSP.2023.3278944.
|
[21] |
VO B N and MA W K. The Gaussian mixture probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4091–4104. doi: 10.1109/TSP.2006.881190.
|
[22] |
VO B N, SINGH S, and DOUCET A. Sequential Monte Carlo methods for multitarget filtering with random finite sets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1224–1245. doi: 10.1109/TAES.2005.1561884.
|
[23] |
PUNITHAKUMAR K, KIRUBARAJAN T, and SINHA A. Multiple-model probability hypothesis density filter for tracking maneuvering targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(1): 87–98. doi: 10.1109/TAES.2008.4516991.
|
[24] |
PASHA S A, VO B N, TUAN H D, et al. A Gaussian mixture PHD filter for jump Markov system models[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(3): 919–936. doi: 10.1109/TAES.2009.5259174.
|
[25] |
GEORGESCU R and WILLETT P. The multiple model CPHD tracker[J]. IEEE Transactions on Signal Processing, 2012, 60(4): 1741–1751. doi: 10.1109/TSP.2012.2183128.
|
[26] |
DONG Peng, JING Zhongliang, GONG Deren, et al. Maneuvering multi-target tracking based on variable structure multiple model GMCPHD filter[J]. Signal Processing, 2017, 141: 158–167. doi: 10.1016/j.sigpro.2017.06.004.
|
[27] |
XUE Yu and FENG Xi’an. Joint multi-Gaussian mixture model and its application to multi-model multi-Bernoulli filter[J]. Digital Signal Processing, 2024, 153: 104616. doi: 10.1016/j.dsp.2024.104616.
|
[28] |
REUTER S, SCHEEL A, and DIETMAYER K. The multiple model labeled multi-Bernoulli filter[C]. 2015 18th International Conference on Information Fusion (Fusion), Washington, USA, 2015: 1574–1580.
|
[29] |
CAO Chenghu and ZHAO Yongbo. Multiple-model generalised labelled multi-Bernoulli filter with distributed sensors for tracking manoeuvring targets using belief propagation[J]. IET Radar, Sonar & Navigation, 2023, 17(5): 845–858. doi: 10.1049/rsn2.12382.
|
[30] |
LI Guchong, KONG Lingjiang, YI Wei, et al. Multiple model Poisson multi-Bernoulli mixture filter for maneuvering targets[J]. IEEE Sensors Journal, 2021, 21(3): 3143–3154. doi: 10.1109/JSEN.2020.3022669.
|
[31] |
SEEGER M. Gaussian processes for machine learning[J]. International Journal of Neural Systems, 2004, 14(2): 69–106. doi: 10.1142/S0129065704001899.
|
[32] |
AFTAB W and MIHAYLOVA L. A Gaussian process regression approach for point target tracking[C]. 2019 22th International Conference on Information Fusion (FUSION), Ottawa, Canada, 2019: 1–8. doi: 10.23919/FUSION43075.2019.9011310.
|
[33] |
AFTAB W and MIHAYLOVA L. A learning Gaussian process approach for maneuvering target tracking and smoothing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(1): 278–292. doi: 10.1109/TAES.2020.3021220.
|
[34] |
SUN Mengwei, DAVIES M E, PROUDLER I K, et al. A Gaussian process regression based dynamical models learning algorithm for target tracking[EB/OL]. https://doi.org/10.48550/arXiv.2211.14162, 2022.
|
[35] |
HU Zheng and LI Tiancheng. A particle Bernoulli filter based on Gaussian process learning for maneuvering target tracking[C]. Proceedings of 2022 30th European Signal Processing Conference (EUSIPCO), Belgrade, Serbia, 2022: 777–781. doi: 10.23919/EUSIPCO55093.2022.9909660.
|
[36] |
GUO Qiang, TENG Long, YIN Tianxiang, et al. Hybrid-driven Gaussian process online learning for highly maneuvering multi-target tracking[J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24(11): 1647–1656. doi: 10.1631/FITEE.2300348.
|
[37] |
ARASARATNAM I and HAYKIN S. Cubature Kalman filters[J]. IEEE Transactions on Automatic Control, 2009, 54(6): 1254–1269. doi: 10.1109/TAC.2009.2019800.
|
[38] |
RAHMATHULLAH A S, GARCíA-FERNáNDEZ á F, and SVENSSON L. Generalized optimal sub-pattern assignment metric[C]. 2017 20th International Conference on Information Fusion (Fusion), Xi’an, China, 2017: 1–8. doi: 10.23919/ICIF.2017.8009645.
|