Citation: | YIN Zinuo, CHEN Hongchang, MA Hailong, HU Tao, BAI Luxin. A Network Traffic Anomaly Detection Method Integrating Unsupervised Adaptive Sampling with Enhanced Siamese Network[J]. Journal of Electronics & Information Technology, 2025, 47(7): 2211-2224. doi: 10.11999/JEIT241115 |
[1] |
潘成胜, 李志祥, 杨雯升, 等. 基于二次特征提取和BiLSTM-Attention的网络流量异常检测方法[J]. 电子与信息学报, 2023, 45(12): 4539–4547. doi: 10.11999/JEIT221296.
PAN Chengsheng, LI Zhixiang, YANG Wensheng, et al. Anomaly detection method of network traffic based on secondary feature extraction and BiLSTM-attention[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4539–4547. doi: 10.11999/JEIT221296.
|
[2] |
GUPTA N, JINDAL V, and BEDI P. CSE-IDS: Using cost-sensitive deep learning and ensemble algorithms to handle class imbalance in network-based intrusion detection systems[J]. Computers & Security, 2022, 112: 102499. doi: 10.1016/j.cose.2021.102499.
|
[3] |
LEEVY J L and KHOSHGOFTAAR T M. A survey and analysis of intrusion detection models based on CSE-CIC-IDS2018 Big Data[J]. Journal of Big Data, 2020, 7(1): 104. doi: 10.1186/s40537-020-00382-x.
|
[4] |
HE Xiaoqiang, CHEN Qianbin, TANG Lun, et al. Federated continuous learning based on stacked broad learning system assisted by digital twin networks: An incremental learning approach for intrusion detection in UAV networks[J]. IEEE Internet of Things Journal, 2023, 10(22): 19825–19838. doi: 10.1109/jiot.2023.3282648.
|
[5] |
WU Zhijun, GAO Pan, CUI Lei, et al. An incremental learning method based on dynamic ensemble RVM for intrusion detection[J]. IEEE Transactions on Network and Service Management, 2022, 19(1): 671–685. doi: 10.1109/tnsm.2021.3102388.
|
[6] |
LI Zhida, RIOS A L G, and TRAJKOVIĆ L. Machine learning for detecting anomalies and intrusions in communication networks[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(7): 2254–2264. doi: 10.1109/jsac.2021.3078497.
|
[7] |
LEI Shengwei, XIA Chunhe, LI Zhong, et al. HNN: A novel model to study the intrusion detection based on multi-feature correlation and temporal-spatial analysis[J]. IEEE Transactions on Network Science and Engineering, 2021, 8(4): 3257–3274. doi: 10.1109/tnse.2021.3109644.
|
[8] |
JIN Zhigang, ZHOU Junyi, LI Bing, et al. FL-IIDS: A novel federated learning-based incremental intrusion detection system[J]. Future Generation Computer Systems, 2024, 151: 57–70. doi: 10.1016/j.future.2023.09.019.
|
[9] |
RESENDE P A A and DRUMMOND A C. A survey of random forest-based methods for intrusion detection systems[J]. ACM Computing Surveys, 2019, 51(3): 48. doi: 10.1145/3178582.
|
[10] |
SHAO Ling, WU Di, and LI Xuelong. Learning deep and wide: A spectral method for learning deep networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(12): 2303–2308. doi: 10.1109/TNNLS.2014.2308519.
|
[11] |
唐宏, 刘丹, 姚立霜, 等. 面向类不平衡网络流量的特征选择算法[J]. 电子与信息学报, 2021, 43(4): 923–930. doi: 10.11999/JEIT190992.
TANG Hong, LIU Dan, YAO Lishuang, et al. Feature selection algorithm for class imbalanced internet traffic[J]. Journal of Electronics & Information Technology, 2021, 43(4): 923–930. doi: 10.11999/JEIT190992.
|
[12] |
TELIKANI A, GANDOMI A H, CHOO K K R, et al. A cost-sensitive deep learning-based approach for network traffic classification[J]. IEEE Transactions on Network and Service Management, 2022, 19(1): 661–670. doi: 10.1109/tnsm.2021.3112283.
|
[13] |
GUPTA N, JINDAL V, and BEDI P. LIO-IDS: Handling class imbalance using LSTM and improved one-vs-one technique in intrusion detection system[J]. Computer Networks, 2021, 192: 108076. doi: 10.1016/j.comnet.2021.108076.
|
[14] |
LIU Lan, WANG Pengcheng, LIN Jun, et al. Intrusion detection of imbalanced network traffic based on machine learning and deep learning[J]. IEEE Access, 2021, 9: 7550–7563. doi: 10.1109/ACCESS.2020.3048198.
|
[15] |
ZHANG Ying and LIU Qiang. On IoT intrusion detection based on data augmentation for enhancing learning on unbalanced samples[J]. Future Generation Computer Systems, 2022, 133: 213–227. doi: 10.1016/j.future.2022.03.007.
|
[16] |
BALASUBRAMANIAM S, VIJESH JOE C, SIVAKUMAR T A, et al. Optimization enabled deep learning-based DDoS attack detection in cloud computing[J]. International Journal of Intelligent Systems, 2023, 2023: 2039217. doi: 10.1155/2023/2039217.
|
[17] |
LAKE B M and BARONI M. Human-like systematic generalization through a meta-learning neural network[J]. Nature, 2023, 623(7985): 115–121. doi: 10.1038/s41586-023-06668-3.
|
[18] |
KUMAR V and SINHA D. Synthetic attack data generation model applying generative adversarial network for intrusion detection[J]. Computers & Security, 2023, 125: 103054. doi: 10.1016/j.cose.2022.103054.
|
[19] |
YAN Mi, HUI S C, and LI Ning. DML-PL: Deep metric learning based pseudo-labeling framework for class imbalanced semi-supervised learning[J]. Information Sciences, 2023, 626: 641–657. doi: 10.1016/j.ins.2023.01.074.
|
[20] |
YAN Fei, LI Nianqiao, ILIYASU A M, et al. Insights into security and privacy issues in smart healthcare systems based on medical images[J]. Journal of Information Security and Applications, 2023, 78: 103621. doi: 10.1016/j.jisa.2023.103621.
|
[21] |
XU Congyuan, SHEN Jizhong, and DU Xin. A method of few-shot network intrusion detection based on meta-learning framework[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 3540–3552. doi: 10.1109/tifs.2020.2991876.
|
[22] |
YANG Jingcheng, LI Hongwei, SHAO Shuo, et al. FS-IDS: A framework for intrusion detection based on few-shot learning[J]. Computers & Security, 2022, 122: 102899. doi: 10.1016/j.cose.2022.102899.
|
[23] |
SHARAFALDIN I, LASHKARI A H, and GHORBANI A A. Toward generating a new intrusion detection dataset and intrusion traffic characterization[C]. The 4th International Conference on Information Systems Security and Privacy, Funchal, Portugal, 2018: 108–116. doi: 10.5220/0006639801080116.
|