Citation: | WANG Jie, WANG Juan. The Design and Implementation of a Secure and Efficient Firmware Trusted Platform Module for RISC-V Platforms[J]. Journal of Electronics & Information Technology, 2025, 47(7): 2385-2395. doi: 10.11999/JEIT241112 |
[1] |
CHALLENER D, YODER K, CATHERMAN R, et al. A Practical Guide to Trusted Computing[M]. Upper Saddle River: IBM Press, 2007.
|
[2] |
张焕国, 罗捷, 金刚, 等. 可信计算研究进展[J]. 武汉大学学报: 理学版, 2006, 52(5): 513–518. doi: 10.3321/j.issn:1671-8836.2006.05.001.
ZHANG Huanguo, LUO Jie, JIN Gang, et al. Development of trusted computing research[J]. Journal of Wuhan University: Natural Science Edition, 2006, 52(5): 513–518. doi: 10.3321/j.issn:1671-8836.2006.05.001.
|
[3] |
沈昌祥, 张焕国, 王怀民, 等. 可信计算的研究与发展[J]. 中国科学: 信息科学, 2010, 40(2): 139–166. doi: 10.1360/zf2010-40-2-139.
SHEN Changxiang, ZHANG Huanguo, WANG Huaimin, et al. Research on trusted computing and its development[J]. Science China Information Sciences, 2010, 53(3): 405–433. doi: 10.1007/s11432-010-0069-x.
|
[4] |
张焕国, 李晶, 潘丹铃, 等. 嵌入式系统可信平台模块研究[J]. 计算机研究与发展, 2011, 48(7): 1269–1278.
ZHANG Huanguo, LI Jing, PAN Danling, et al. Trusted platform module in embedded system[J]. Journal of Computer Research and Development, 2011, 48(7): 1269–1278.
|
[5] |
ARTHUR W, CHALLENER D, and GOLDMAN K. A Practical Guide to TPM 2.0: Using the Trusted Platform Module in the New Age of Security[M]. Berkeley: Springer, 2015. doi: 10.1007/978-1-4302-6584-9.
|
[6] |
SVENDA P, DUFKA A, BROZ M, et al. TPMScan: A wide-scale study of security-relevant properties of TPM 2.0 chips[J]. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2024, 2024(2): 714–734. doi: 10.46586/tches.v2024.i2.714-734.
|
[7] |
RAJ H, SAROIU S, WOLMAN A, et al. fTPM: A software-only implementation of a TPM chip[C]. 25th USENIX Security Symposium, Washington, USA, 2016: 841–856.
|
[8] |
Intel Corporation. Intel® coreTM processors[EB/OL]. https://www.intel.com/content/www/us/en/support/articles/000094205/processors/intel-core-processors.html, 2024.
|
[9] |
JACOB H N, WERLING C, BUHREN R, et al. faulTPM: Exposing AMD fTPMs’ Deepest Secrets[C]. 2023 IEEE 8th European Symposium on Security and Privacy (EuroS&P), Delft, Netherlands, 2023: 1128–1142. doi: 10.1109/EuroSP57164.2023.00069.
|
[10] |
COSTAN V and DEVADAS S. Intel SGX explained[EB/OL]. https://eprint.iacr.org/2016/086, 2016.
|
[11] |
AMD. AMD SEV-SNP: Strengthening VM isolation with integrity protection and more[R]. 2020: 1450–1465.
|
[12] |
CUI Enfang, LI Tianzheng, and WEI Qian. RISC-V instruction set architecture extensions: A survey[J]. IEEE Access, 2023, 11: 24696–24711. doi: 10.1109/ACCESS.2023.3246491.
|
[13] |
LI Tianzheng, CUI Enfang, WU Yuting, et al. TeleVM: A lightweight virtual machine for RISC-V architecture[J]. IEEE Computer Architecture Letters, 2024, 23(1): 121–124. doi: 10.1109/LCA.2024.3394835.
|
[14] |
KIM J S, PATEL M, HASSAN H, et al. The DRAM latency PUF: Quickly evaluating physical unclonable functions by exploiting the latency-reliability tradeoff in modern commodity DRAM devices[C]. 2018 IEEE International Symposium on High Performance Computer Architecture (HPCA), Vienna, Austria, 2018: 194–207. doi: 10.1109/HPCA.2018.00026.
|
[15] |
TEHRANIPOOR F, KARIMIAN N, XIAO Kan, et al. DRAM based intrinsic physical unclonable functions for system level security[C]. Proceedings of the 25th edition on Great Lakes Symposium on VLSI, Pittsburgh, USA, 2015: 15–20. doi: 10.1145/2742060.2742069.
|
[16] |
RISC-V Software Source. OpenSBI: RISC-V open source supervisor binary interface[EB/OL]. https://github.com/riscv-software-src/opensbi, 2024.
|
[17] |
Chipsalliance. Rocket chip generator[EB/OL]. https://github.com/chipsalliance/rocket-chip, 2024.
|
[18] |
Kgoldman. IBM software TPM 2.0[EB/OL]. https://github.com/kgoldman/ibmswtpm2, 2024.
|
[19] |
WANG Juan, WANG Jie, FAN Chengyang, et al. SvTPM: SGX-based virtual trusted platform modules for cloud computing[J]. IEEE Transactions on Cloud Computing, 2023, 11(3): 2936–2953. doi: 10.1109/TCC.2023.3243891.
|
[20] |
NARAYANAN V, CARVALHO C, RUOCCO A, et al. Remote attestation of confidential VMs using ephemeral vTPMs[C]. The 39th Annual Computer Security Applications Conference, Austin, USA, 2023: 732–743. doi: 10.1145/3627106.3627112.
|
[21] |
WU Jiangxing. Cyberspace endogenous security and safety problems[M]. WU Jiangxing. Cyber Resilience System Engineering Empowered by Endogenous Security and Safety. Singapore: Springer, 2024: 1–73. doi: 10.1007/978-981-97-0116-2_1.
|
[22] |
CHEN Hongsong, HAN Xintong, and ZHANG Yiying. Endogenous security formal definition, innovation mechanisms, and experiment research in industrial Internet[J]. Tsinghua Science and Technology, 2024, 29(2): 492–505. doi: 10.26599/TST.2023.9010034.
|
[23] |
GUO Jinnan, PIETZUCH P, PAVERD A, et al. Trustworthy AI using confidential federated learning[J]. Communications of the ACM, 2024, 67(9): 48–53. doi: 10.1145/3677390.
|
[24] |
CHEN Hongsong, TAO Zimei, WANG Zhiheng, et al. Merkle multi-branch hash tree-based dynamic data integrity auditing for B5G network cloud storage[J]. Journal of Information Security and Applications, 2025, 89: 103981. doi: 10.1016/j.jisa.2025.103981.
|
[25] |
FRITZMANN T, SIGL G, and SEPÚLVEDA J. RISQ-V: Tightly coupled RISC-V accelerators for post-quantum cryptography[J]. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2020, 2020(4): 239–280. doi: 10.13154/tches.v2020.i4.239-280.
|
[26] |
DE CASTELNAU J. Software optimization for a RISC-V accelerator: A case study[EB/OL]. https://infoscience.epfl.ch/server/api/core/bitstreams/472275ca-4a0a-4f5b-831d-1082a77f98f2/content, 2024.
|
[27] |
SCHIAVONE P D, CONTI F, ROSSI D, et al. Slow and steady wins the race? A comparison of ultra-low-power RISC-V cores for internet-of-things applications[C]. 2017 27th International Symposium on Power and Timing Modeling, Optimization and Simulation (PATMOS), Thessaloniki, Greece, 2017: 1–8. doi: 10.1109/PATMOS.2017.8106976.
|
[28] |
LEE D, KOHLBRENNER D, SHINDE S, et al. Keystone: An open framework for architecting trusted execution environments[C]. The Fifteenth European Conference on Computer Systems, Heraklion, Greece, 2020: 38. doi: 10.1145/3342195.3387532.
|
[29] |
LIU Chang, WU Yanjun, WU Jingzheng, et al. A buffer overflow detection and defense method based on RISC-V instruction set extension[J]. Cybersecurity, 2023, 6(1): 45. doi: 10.1186/s42400-023-00164-x.
|