Citation: | SUN Jun, YANG Junlong, YANG Qingqing, HU Mingzhi, WU Ziyi. Joint Local Linear Embedding and Deep Reinforcement Learning for RIS-MISO Downlink Sum-Rate Optimization[J]. Journal of Electronics & Information Technology, 2025, 47(7): 2117-2126. doi: 10.11999/JEIT241083 |
[1] |
BASAR E, ALEXANDROPOULOS G C, LIU Yuanwei, et al. Reconfigurable intelligent surfaces for 6G: Emerging hardware architectures, applications, and open challenges[J]. IEEE Vehicular Technology Magazine, 2024, 19(3): 27–47. doi: 10.1109/MVT.2024.3415570.
|
[2] |
BILOTTI F, BARBUTO M, HAMZAVI-ZARGHANI Z, et al. Reconfigurable intelligent surfaces as the key-enabling technology for smart electromagnetic environments[J]. Advances in Physics: X, 2024, 9(1): 2299543. doi: 10.1080/23746149.2023.2299543.
|
[3] |
FENG Yijun, HU Qi, QU Kai, et al. Reconfigurable intelligent surfaces: Design, implementation, and practical demonstration[J]. Electromagnetic Science, 2023, 1(2): 0020111. doi: 10.23919/emsci.2022.0011.
|
[4] |
GUO Huayan, LIANG Yingchang, CHEN Jie, et al. Weighted sum-rate maximization for intelligent reflecting surface enhanced wireless networks[C]. 2019 IEEE Global Communications Conference, Waikoloa, USA, 2019: 1–6. doi: 10.1109/GLOBECOM38437.2019.9013288.
|
[5] |
田心记, 孟浩然, 李兴旺, 等. 双STAR-RIS辅助下行NOMA系统中最大化和速率的方法[J]. 电子与信息学报, 2024, 46(9): 3537–3543. doi: 10.11999/JEIT240007.
TIAN Xinji, MENG Haoran, LI Xingwang, et al. Method of maximizing sum rate for dual STAR-RIS assisted downlink NOMA systems[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3537–3543. doi: 10.11999/JEIT240007.
|
[6] |
ZHU Guangxu, LYU Zhonghao, JIAO Xiang, et al. Pushing AI to wireless network edge: An overview on integrated sensing, communication, and computation towards 6G[J]. Science China Information Sciences, 2023, 66(3): 130301. doi: 10.1007/s11432-022-3652-2.
|
[7] |
LEE H, LEE B, YANG H, et al. Towards 6G hyper-connectivity: Vision, challenges, and key enabling technologies[J]. Journal of Communications and Networks, 2023, 25(3): 344–354. doi: 10.23919/JCN.2023.000006.
|
[8] |
ZHONG Ruikang, LIU Yuanwei, MU Xidong, et al. AI empowered RIS-assisted NOMA networks: Deep learning or reinforcement learning?[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(1): 182–196. doi: 10.1109/JSAC.2021.3126068.
|
[9] |
HUANG Hongji, SONG Yiwei, YANG Jie, et al. Deep-learning-based millimeter-wave massive MIMO for hybrid precoding[J]. IEEE Transactions on Vehicular Technology, 2019, 68(3): 3027–3032. doi: 10.1109/TVT.2019.2893928.
|
[10] |
HUANG Hao, XIA Wenchao, XIONG Jian, et al. Unsupervised learning-based fast beamforming design for downlink MIMO[J]. IEEE Access, 2019, 7: 7599–7605. doi: 10.1109/ACCESS.2018.2887308.
|
[11] |
陈真, 杜晓宇, 唐杰, 等. 基于深度强化学习的RIS辅助通感融合网络: 挑战与机遇[J]. 电子与信息学报, 2024, 46(9): 3467–3473. doi: 10.11999/JEIT240086.
CHEN Zhen, DU Xiaoyu, TANG Jie, et al. DRL-based RIS-assisted ISAC network: Challenges and opportunities[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3467–3473. doi: 10.11999/JEIT240086.
|
[12] |
CHEN Peng, LI Xiao, MATTHAIOU M, et al. DRL-based RIS phase shift design for OFDM communication systems[J]. IEEE Wireless Communications Letters, 2023, 12(4): 733–737. doi: 10.1109/LWC.2023.3242449.
|
[13] |
HUANG Chongwen, MO Ronghong, and YUEN C. Reconfigurable intelligent surface assisted multiuser MISO systems exploiting deep reinforcement learning[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1839–1850. doi: 10.1109/JSAC.2020.3000835.
|
[14] |
ZHANG Ruichen, XIONG Ke, LU Yang, et al. Energy efficiency maximization in RIS-assisted SWIPT networks with RSMA: A PPO-based approach[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(5): 1413–1430. doi: 10.1109/JSAC.2023.3240707.
|
[15] |
HUANG Chongwen, YANG Zhaohui, ALEXANDROPOULOS G C, et al. Multi-hop RIS-empowered terahertz communications: A DRL-based hybrid beamforming design[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(6): 1663–1677. doi: 10.1109/JSAC.2021.3071836.
|
[16] |
SAGLAM B, GURGUNOGLU D, and KOZAT S S. Deep reinforcement learning based joint downlink beamforming and RIS configuration in RIS-aided MU-MISO systems under hardware impairments and imperfect CSI[C]. 2023 IEEE International Conference on Communications Workshops, Rome, Italy, 2023: 66–72. doi: 10.1109/ICCWorkshops57953.2023.10283517.
|
[17] |
IZENMAN A J. Introduction to manifold learning[J]. WIREs: Computational Statistics, 2012, 4(5): 439–446. doi: 10.1002/wics.1222.
|
[18] |
ZHOU Xiaoping, WANG Peipei, YANG Zhe, et al. A manifold learning two-tier beamforming scheme optimizes resource management in massive MIMO networks[J]. IEEE Access, 2020, 8: 22976–22987. doi: 10.1109/ACCESS.2020.2964615.
|
[19] |
ZHU Guangxu, LIU Dongzhu, DU Yuqing, et al. Toward an intelligent edge: Wireless communication meets machine learning[J]. IEEE Communications Magazine, 2020, 58(1): 19–25. doi: 10.1109/MCOM.001.1900103.
|
[20] |
ZHU Fenghao, WANG Xinquan, HUANG Chongwen, et al. Robust beamforming for RIS-aided communications: Gradient-based manifold meta learning[J]. IEEE Transactions on Wireless Communications, 2024, 23(11): 15945–15956. doi: 10.1109/TWC.2024.3435023.
|
[21] |
DE SOUZA JUNIOR W, GUERRA D W M, MARINELLO FILHO J C, et al. Manifold-based optimizations for RIS-aided massive MIMO systems[J]. IEEE Open Journal of the Communications Society, 2024, 5: 7913–7940. doi: 10.1109/OJCOMS.2024.3512662.
|
[22] |
DAI Linglong and WEI Xiuhong. Distributed machine learning based downlink channel estimation for RIS assisted wireless communications[J]. IEEE Transactions on Communications, 2022, 70(7): 4900–4909. doi: 10.1109/TCOMM.2022.3175175.
|
[23] |
HAARNOJA T, ZHOU A, HARTIKAINEN K, et al. Soft actor-critic algorithms and applications[EB/OL]. https://arxiv.org/abs/1812.05905, 2018.
|