Citation: | ZHANG Hong, YI Min, ZHANG Xijun, LI Yang, ZHANG Pengcheng. Long-term Transformer and Adaptive Fourier Transform for Dynamic Graph Convolutional Traffic Flow Prediction Study[J]. Journal of Electronics & Information Technology, 2025, 47(7): 2249-2262. doi: 10.11999/JEIT241076 |
[1] |
CINI N and AYDIN Z. A deep ensemble approach for long-term traffic flow prediction[J]. Arabian Journal for Science and Engineering, 2024, 49(9): 12377–12392. doi: 10.1007/s13369-023-08672-1.
|
[2] |
SATTARZADEH A R, KUTADINATA R J, PATHIRANA P N, et al. A novel hybrid deep learning model with ARIMA Conv-LSTM networks and shuffle attention layer for short-term traffic flow prediction[J]. Transportmetrica A: Transport Science, 2025, 21(1): 2236724. doi: 10.1080/23249935.2023.2236724.
|
[3] |
CHENG Zeyang, LU Jian, ZHOU Huajian, et al. Short-term traffic flow prediction: An integrated method of econometrics and hybrid deep learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(6): 5231–5244. doi: 10.1109/TITS.2021.3052796.
|
[4] |
HE Silu, LUO Qinyao, DU Ronghua, et al. STGC-GNNs: A GNN-based traffic prediction framework with a spatial–temporal Granger causality graph[J]. Physica A: Statistical Mechanics and its Applications, 2023, 623: 128913. doi: 10.1016/j.physa.2023.128913.
|
[5] |
ZHU Hailong, XIE Yawen, HE Wei, et al. A novel traffic flow forecasting method based on RNN‐GCN and BRB[J]. Journal of Advanced Transportation, 2020, 2020: 1–11. doi: 10.1155/2020/7586154.
|
[6] |
SUN Lijun, LIU Mingzhi, LIU Guanfeng, et al. FD-TGCN: Fast and dynamic temporal graph convolution network for traffic flow prediction[J]. Information Fusion, 2024, 106: 102291. doi: 10.1016/j.inffus.2024.102291.
|
[7] |
LIU Yutian, FENG Tao, RASOULI S, et al. ST-DAGCN: A spatiotemporal dual adaptive graph convolutional network model for traffic prediction[J]. Neurocomputing, 2024, 601: 128175. doi: 10.1016/j.neucom.2024.128175.
|
[8] |
BING Qichun, ZHAO Panpan, REN Canzheng, et al. Short-Term traffic flow forecasting method based on secondary decomposition and conventional neural network–transformer[J]. Sustainability, 2024, 16(11): 4567. doi: 10.3390/su16114567.
|
[9] |
WANG Runjie, SHI Wenzhong, LIU Xianglei, et al. An adaptive cutoff frequency selection approach for fast fourier transform method and its application into short-term traffic flow forecasting[J]. ISPRS International Journal of Geo-Information, 2020, 9(12): 731. doi: 10.3390/ijgi9120731.
|
[10] |
LI He, LI Xuejiao, SU Liangcai, et al. Deep spatio-temporal adaptive 3D convolutional neural networks for traffic flow prediction[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2022, 13(2): 1–21. doi: 10.1145/3510829.
|
[11] |
CHEN Jian, WANG Wei, YU Keping, et al. Node connection strength matrix-based graph convolution network for traffic flow prediction[J]. IEEE Transactions on Vehicular Technology, 2023, 72(9): 12063–12074. doi: 10.1109/TVT.2023.3265300.
|
[12] |
ZHANG Hong, CHEN Linlong, CAO Jie, et al. Traffic flow forecasting of graph convolutional network based on spatio-temporal attention mechanism[J]. International Journal of Automotive Technology, 2023, 24(4): 1013–1023. doi: 10.1007/s12239-023-0083-9.
|
[13] |
LING Jiahao, LAN Yuanchun, HUANG Xiaohui, et al. A multi-scale residual graph convolution network with hierarchical attention for predicting traffic flow in urban mobility[J]. Complex & Intelligent Systems, 2024, 10(3): 3305–3317. doi: 10.1007/s40747-023-01324-9.
|
[14] |
WANG Xinqiang, SHANG Yihui, and LI Guoyan. DTM-GCN: A traffic flow prediction model based on dynamic graph convolutional network[J]. Multimedia Tools and Applications, 2024, 83(41): 89545–89561. doi: 10.1007/s11042-024-18348-z.
|
[15] |
LI Zuhua, WEI Siwei, WANG Haibo, et al. ADDGCN: A novel approach with down-sampling dynamic graph convolution and multi-head attention for traffic flow forecasting[J]. Applied Sciences, 2024, 14(10): 4130. doi: 10.3390/app14104130.
|
[16] |
邓涵优, 陈红梅, 肖清, 等. 基于多头注意力动态图卷积网络的交通流预测[J]. 太原理工大学学报, 2024, 55(1): 172–183. doi: 10.16355/j.tyut.1007-9432.2023BD004.
DENG Hanyou, CHEN Hongmei, XIAO Qing, et al. Dynamic graph convolution network with multi-head attention for traffic flow prediction[J]. Journal of Taiyuan University of Technology, 2024, 55(1): 172–183. doi: 10.16355/j.tyut.1007-9432.2023BD004.
|
[17] |
PENG Hao, DU Bowen, and LIU Mingsheng, et al. Dynamic graph convolutional network for long-term traffic flow prediction with reinforcement learning[J]. Information Sciences, 2021, 578: 401–416. doi: 1016/j.ins.2021.07.007. doi: 10.1016/j.ins.2021.07.007.
|
[18] |
唐晨嘉, 曾伟, 赵振兴. 基于自适应动态图卷积循环网络的交通流预测[J]. 武汉理工大学学报(交通科学与工程版), 2024, 48(3): 415–420. doi: 10.3963/j.issn.2095-3844.2024.03.002.
TANG Chenjia, ZENG Wei, and ZHAO Zhenxing. Traffic flow prediction based on adaptive dynamic graph convolutional recurrent network[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2024, 48(3): 415–420. doi: 10.3963/j.issn.2095-3844.2024.03.002.
|
[19] |
蒋挺, 杨柳, 刘亚林, 等. 基于分解动态时空分解框架预测交通流量[J]. 科学技术与工程, 2025, 25(7): 3007–3017. doi: 10.12404/j.issn.1671-1815.2307832.
JIANG Ting, YANG Liu, LIU Yalin, et al. Traffic flow prediction based on the dynamic spatial-temporal decomposition framework[J]. Science Technology and Engineering, 2025, 25(7): 3007–3017. doi: 10.12404/j.issn.1671-1815.2307832.
|
[20] |
WEI Siwei, YANG Yang, LIU Donghua, et al. Transformer-Based spatiotemporal graph diffusion convolution network for traffic flow forecasting[J]. Electronics, 2024, 13(16): 3151. doi: 10.3390/electronics13163151.
|
[21] |
YANG Hanqing, WEI Sen, and WANG Yuanqing. STFEformer: Spatial–Temporal fusion embedding transformer for traffic flow prediction[J]. Applied Sciences, 2024, 14(10): 4325. doi: 10.3390/app14104325.
|
[22] |
ZHU Changfeng, YU Chunxiao, and HUO Jiuyuan. Research on spatio-temporal network prediction model of parallel–series traffic flow based on transformer and GCAT[J]. Physica A: Statistical Mechanics and its Applications, 2023, 610: 128414. doi: 10.1016/j.physa.2022.128414.
|
[23] |
REN Qianqian, LI Yang, and LIU Yong. Transformer-enhanced periodic temporal convolution network for long short-term traffic flow forecasting[J]. Expert Systems with Applications, 2023, 227: 120203. doi: 10.1016/j.eswa.2023.120203.
|
[24] |
ZHANG Chen, WU Yue, SHEN Ya, et al. Adaptive graph convolutional recurrent network with transformer and whale optimization algorithm for traffic flow prediction[J]. Mathematics, 2024, 12(10): 1493. doi: 10.3390/math12101493.
|
[25] |
ZANG Linlin, WANG Tao, ZHANG Bo, et al. Transfer learning-based nonstationary traffic flow prediction using AdaRNN and DCORAL[J]. Expert Systems with Applications, 2024, 258: 125143. doi: 10.1016/j.eswa.2024.125143.
|
[26] |
YIN Lisheng, LIU Pan, WU Yangyang, et al. ST-VGBiGRU: A hybrid model for traffic flow prediction with spatio-temporal multimodality[J]. IEEE Access, 2023, 11: 54968–54985. doi: 10.1109/ACCESS.2023.3282323.
|
[27] |
HUANG Xiaoting, MA Changxi, ZHAO Yongpeng, et al. A hybrid model of neural network with VMD–CNN–GRU for traffic flow prediction[J]. International Journal of Modern Physics C, 2023, 34(12): 2350159. doi: 10.1142/S0129183123501590.
|
[28] |
SUN Haoran, WEI Yanling, HUANG Xueliang, et al. Global spatio‐temporal dynamic capturing network‐based traffic flow prediction[J]. IET Intelligent Transport Systems, 2023, 17(6): 1220–1228. doi: 10.1049/itr2.12371.
|
[29] |
LI Yaguang and SHAHABI C. A brief overview of machine learning methods for short-term traffic forecasting and future directions[J]. SIGSPATIAL Special, 2018, 10(1): 3–9. doi: 10.1145/3231541.3231544.
|
[30] |
CHEN Tianqi and GUESTRIN C. XGBoost: A scalable tree boosting system[C]. The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, USA, 2016: 785–794. doi: 10.1145/2939672.2939785.
|
[31] |
LAI Qiang and CHEN Peng. LEISN: A long explicit–implicit spatio-temporal network for traffic flow forecasting[J]. Expert Systems with Applications, 2024, 245: 123139. doi: 10.1016/j.eswa.2024.123139.
|
[32] |
GUO Shengnan, LIN Youfang, FENG Ning, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[C]. Proceedings of the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, USA, 2019: 922–929. doi: 10.1609/aaai.v33i01.3301922.
|
[33] |
ZHENG Chuanpan, FAN Xiaoliang, WANG Cheng, et al. GMAN: A graph multi-attention network for traffic prediction[C]. The 34th AAAI Conference on Artificial Intelligence, New York, USA, 2020: 1234–1241. doi: 10.1609/aaai.v34i01.5477.
|
[34] |
LI Yaguang, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: Data-driven traffic forecasting[C]. The 6th International Conference on Learning Representations, Vancouver, Canada, 2018: 1–16. doi: 10.48550/arXiv.1707.01926.
|
[35] |
WU Zonghan, PAN Shirui, LONG Guodong, et al. Connecting the dots: Multivariate time series forecasting with graph neural networks[C]. The 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, California, USA, 2020: 753–763. doi: 10.1145/3394486.3403118.
|
[36] |
TIAN Chenyu and CHAN W K. Spatial-temporal attention wavenet: A deep learning framework for traffic prediction considering spatial-temporal dependencies[J]. IET Intelligent Transport Systems, 2021, 15(4): 549–561. doi: 10.1049/itr2.12044.
|