Citation: | DONG Peihao, JIA Jibin, ZHOU Fuhui, WU Qihui. Differentially Private Federated Learning Based Wideband Spectrum Sensing for the Low-Altitude Unmanned Aerial Vehicle Swarm[J]. Journal of Electronics & Information Technology, 2025, 47(5): 1345-1355. doi: 10.11999/JEIT241042 |
[1] |
ADIL M, SONG Houbing, MASTORAKIS S, et al. UAV-assisted IoT applications, cybersecurity threats, AI-enabled solutions, open challenges with future research directions[J]. IEEE Transactions on Intelligent Vehicles, 2024, 9(4): 4583–4605. doi: 10.1109/TIV.2023.3309548.
|
[2] |
SHARMA A, VANJANI P, PALIWAL N, et al. Communication and networking technologies for UAVs: A survey[J]. Journal of Network and Computer Applications, 2020, 168: 102739. doi: 10.1016/j.jnca.2020.102739.
|
[3] |
HU Hang, DA Xinyu, HUANG Yangchao, et al. SE and EE optimization for cognitive UAV network based on location information[J]. IEEE Access, 2019, 7: 162115–162126. doi: 10.1109/ACCESS.2019.2951702.
|
[4] |
DONG Peihao, HE Chaowei, GAO Shen, et al. Edge-learning-based collaborative automatic modulation classification for hierarchical cognitive radio networks[J]. IEEE Internet of Things Journal, 2024, 11(21): 34443–34454. doi: 10.1109/JIOT.2024.3431236.
|
[5] |
FANG Jun, WANG Bin, LI Hongbin, et al. Recent advances on sub-Nyquist sampling-based wideband spectrum sensing[J]. IEEE Wireless Communications, 2021, 28(3): 115–121. doi: 10.1109/MWC.001.2000353.
|
[6] |
XU Weibo, WANG Shuo, YAN Shu, et al. An efficient wideband spectrum sensing algorithm for unmanned aerial vehicle communication networks[J]. IEEE Internet of Things Journal, 2019, 6(2): 1768–1780. doi: 10.1109/JIOT.2018.2882532.
|
[7] |
YANG Linxiao, FANG Jun, DUAN Huiping, et al. Fast compressed power spectrum estimation: Toward a practical solution for wideband spectrum sensing[J]. IEEE Transactions on Wireless Communications, 2020, 19(1): 520–532. doi: 10.1109/TWC.2019.2946805.
|
[8] |
WEI Ziping, ZHANG Han, ZHANG Yang, et al. Fast compressed wideband spectrum sensing[J]. IEEE Transactions on Vehicular Technology, 2024, 73(2): 2924–2929. doi: 10.1109/TVT.2023.3318217.
|
[9] |
ZHANG Han, YANG Jian, and GAO Yue. Machine learning empowered spectrum sensing under a sub-sampling framework[J]. IEEE Transactions on Wireless Communications, 2022, 21(10): 8205–8215. doi: 10.1109/TWC.2022.3164800.
|
[10] |
UVAYDOV D, D’ORO S, RESTUCCIA F, et al. DeepSense: Fast wideband spectrum sensing through real-time in-the-loop deep learning[C]. The IEEE INFOCOM 2021 - IEEE Conference on Computer Communications, Vancouver, Canada, 2021: 1–10. doi: 10.1109/INFOCOM42981.2021.9488764.
|
[11] |
MEI Ruru and WANG Zhugang. Deep learning-based wideband spectrum sensing: A low computational complexity approach[J]. IEEE Communications Letters, 2023, 27(10): 2633–2637. doi: 10.1109/LCOMM.2023.3310715.
|
[12] |
MEI Ruru and WANG Zhugang. Compressed spectrum sensing of sparse wideband signals based on deep learning[J]. IEEE Transactions on Vehicular Technology, 2024, 73(6): 8434–8444. doi: 10.1109/TVT.2024.3358026.
|
[13] |
LI Lusi, JIANG He, and HE Haibo. Deep transfer cooperative sensing in cognitive radio[J]. IEEE Wireless Communications Letters, 2021, 10(6): 1354–1358. doi: 10.1109/LWC.2021.3067508.
|
[14] |
SOLANKI S, DEHALWAR V, CHOUDHARY J, et al. Spectrum sensing in cognitive radio using CNN-RNN and transfer learning[J]. IEEE Access, 2022, 10: 113482–113492. doi: 10.1109/ACCESS.2022.3216877.
|
[15] |
DONG Peihao, JIA Jibin, GAO Shen, et al. Pruned convolutional attention network based wideband spectrum sensing with sub-Nyquist sampling[J]. IEEE Transactions on Vehicular Technology, 2025, 74(4): 6817–6822. doi: 10.1109/TVT.2024.3507159.
|
[16] |
WANG Zhibo, SONG Mengkai, ZHANG Zhifei, et al. Beyond inferring class representatives: User-level privacy leakage from federated learning[C]. The IEEE INFOCOM 2019 - IEEE Conference on Computer Communications, Paris, France, 2019: 2512–2520. doi: 10.1109/INFOCOM.2019.8737416.
|
[17] |
DWORK C and ROTH A. The Algorithmic Foundations of Differential Privacy[M]. Boston: Now Publishers Inc. , 2014: 211–407. doi: 10.1561/0400000042.
|
[18] |
MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]. The 20th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, USA, 2017: 1273–1282.
|