Citation: | LIAN Yuanfeng, TIAN Tian, CHEN Xiaohe, DONG Shaohua. Gas Station Inspection Task Allocation Algorithm in Digital Twin-assisted Reinforcement Learning[J]. Journal of Electronics & Information Technology, 2025, 47(7): 2285-2297. doi: 10.11999/JEIT241027 |
[1] |
SHUKLA A and KARKI H. A review of robotics in onshore oil-gas industry[C]. 2013 IEEE International Conference on Mechatronics and Automation, Takamatsu, Japan, 2013: 1153–1160. doi: 10.1109/ICMA.2013.6618077.
|
[2] |
GERKEY B P and MATARIĆ M J. A formal analysis and taxonomy of task allocation in multi-robot systems[J]. The International Journal of Robotics Research, 2004, 23(9): 939–954. doi: 10.1177/0278364904045564.
|
[3] |
GAO Jianqi, LI Yanjie, XU Yunhong, et al. A two-objective ILP model of OP-MATSP for the multi-robot task assignment in an intelligent warehouse[J]. Applied Sciences, 2022, 12(10): 4843. doi: 10.3390/app12104843.
|
[4] |
TOTH P and VIGO D. Vehicle Routing: Problems, Methods, and Applications[M]. 2nd ed. Philadelphia: Society for Industrial and Applied Mathematics, 2014.
|
[5] |
DIAS M B, ZLOT R, KALRA N, et al. Market-based multirobot coordination: A survey and analysis[J]. Proceedings of the IEEE, 2006, 94(7): 1257–1270. doi: 10.1109/JPROC.2006.876939.
|
[6] |
SCHNEIDER E, SKLAR E I, PARSONS S, et al. Auction-based task allocation for multi-robot teams in dynamic environments[C]. The 16th Annual Conference on Towards Autonomous Robotic Systems, Liverpool, UK, 2015: 246–257. doi: 10.1007/978-3-319-22416-9_29.
|
[7] |
GHASSEMI P and CHOWDHURY S. Decentralized task allocation in multi-robot systems via bipartite graph matching augmented with fuzzy clustering[C]. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Quebec, Canada, 2018: V02AT03A014. doi: 10.1115/DETC2018-86161.
|
[8] |
GHASSEMI P, DEPAUW D, and CHOWDHURY S. Decentralized dynamic task allocation in swarm robotic systems for disaster response: Extended abstract[C]. 2019 International Symposium on Multi-Robot and Multi-Agent Systems (MRS), New Brunswick, USA, 2019: 83–85. doi: 10.1109/MRS.2019.8901062.
|
[9] |
XIAO Kun, LU Junqi, NIE Ying, et al. A benchmark for multi-UAV task assignment of an extended team orienteering problem[C]. 2022 China Automation Congress (CAC), Xiamen, China, 2022: 6966–6970. doi: 10.1109/CAC57257.2022.10054991.
|
[10] |
KOENIG S, TOVEY C, LAGOUDAKIS M, et al. The power of sequential single-item auctions for agent coordination[C]. Proceedings of the 21st National Conference on Artificial Intelligence-Volume 2, Boston Massachusetts, USA, 2006: 1625–1629.
|
[11] |
GAUTIER P, LAURENT J, and DIGUET J P. DQN as an alternative to Market-based approaches for Multi-Robot processing Task Allocation (MRpTA)[J]. International Journal of Robotic Computing, 2021, 3(1): 69–98. doi: 10.35708/rc1870-126266.
|
[12] |
AGRAWAL A, BEDI A S, and MANOCHA D. RTAW: An attention inspired reinforcement learning method for multi-robot task allocation in warehouse environments[C]. 2023 IEEE International Conference on Robotics and Automation (ICRA), London, United Kingdom, 2023: 1393–1399. doi: 10.1109/ICRA48891.2023.10161310.
|
[13] |
STRENS M and WINDELINCKX N. Combining planning with reinforcement learning for multi-robot task allocation[M]. KUDENKO D, KAZAKOV D, and ALONSO E. Adaptive Agents and Multi-Agent Systems II: Adaptation and Multi-Agent Learning. Berlin, Heidelberg: Springer, 2005: 260–274. doi: 10.1007/978-3-540-32274-0_17.
|
[14] |
HERSI A H and UDAYAN J D. Efficient and robust multirobot navigation and task allocation using soft actor critic[J]. Procedia Computer Science, 2024, 235: 484–495. doi: 10.1016/j.procs.2024.04.048.
|
[15] |
AZIZ H, PAL A, POURMIRI A, et al. Task allocation using a team of robots[J]. Current Robotics Reports, 2022, 3(4): 227–238. doi: 10.1007/s43154-022-00087-4.
|
[16] |
TAO Fei, XIAO Bin, QI Qinglin, et al. Digital twin modeling[J]. Journal of Manufacturing Systems, 2022, 64: 372–389. doi: 10.1016/j.jmsy.2022.06.015.
|
[17] |
LEE D, LEE S, MASOUD N, et al. Digital twin-driven deep reinforcement learning for adaptive task allocation in robotic construction[J]. Advanced Engineering Informatics, 2022, 53: 101710. doi: 10.1016/j.aei.2022.101710.
|
[18] |
SHEN Gaoqing, LEI Lei, LI Zhilin, et al. Deep reinforcement learning for flocking motion of multi-UAV systems: Learn from a digital twin[J]. IEEE Internet of Things Journal, 2022, 9(13): 11141–11153. doi: 10.1109/jiot.2021.3127873.
|
[19] |
TANG Xin, LI Xiaohuan, YU Rong, et al. Digital-twin-assisted task assignment in multi-UAV systems: A deep reinforcement learning approach[J]. IEEE Internet of Things Journal, 2023, 10(17): 15362–15375. doi: 10.1109/jiot.2023.3263574.
|
[20] |
SHEN Xingwang, LIU Shimin, ZHOU Bin, et al. Digital twin-driven reinforcement learning method for marine equipment vehicles scheduling problem[J]. IEEE Transactions on Automation Science and Engineering, 2024, 21(3): 2173–2183. doi: 10.1109/tase.2023.3289915.
|
[21] |
XU Zhenyu, CHANG Daofang, SUN Miaomiao, et al. Dynamic scheduling of crane by embedding deep reinforcement learning into a digital twin framework[J]. Information, 2022, 13(6): 286. doi: 10.3390/info13060286.
|
[22] |
SHEVITZ D and PADEN B. Lyapunov stability theory of nonsmooth systems[J]. IEEE Transactions on Automatic Control, 1994, 39(9): 1910–1914. doi: 10.1109/9.317122.
|
[23] |
SCHULMAN J, WOLSKI F, DHARIWAL P, et al. Proximal policy optimization algorithms[J]. arXiv preprint arXiv: 1707.06347, 2017. doi: 10.48550/arXiv.1707.06347.
|
[24] |
STURTEVANT N R. Benchmarks for grid-based pathfinding[J]. IEEE Transactions on Computational Intelligence and AI in Games, 2012, 4(2): 144–148. doi: 10.1109/tciaig.2012.2197681.
|