Citation: | WANG Kaizheng, ZENG Yao, ZHANG Zhanxi, TAN Yizhang, WEN Gang. FCSNet: A Frequency-Domain Aware Cross-Feature Fusion Network for Smoke Segmentation[J]. Journal of Electronics & Information Technology, 2025, 47(7): 2320-2333. doi: 10.11999/JEIT241021 |
[1] |
王开正, 周顺珍, 王健, 等. 基于多尺度时空特征深度融合神经网络的输电线路火点判识方法[J]. 高电压技术, 2025, 51(3): 1145–1157. doi: 10.13336/j.1003-6520.hve.20240086.
WANG Kaizheng, ZHOU Shunzhen, WANG Jian, et al. Wildfire identification method for transmission lines based on deep fusion neural network with multi-scale spatio-temporal features[J]. High Voltage Engineering, 2025, 51(3): 1145–1157. doi: 10.13336/j.1003-6520.hve.20240086.
|
[2] |
杜辰, 王兴, 董增寿, 等. 改进YOLOv5s的地下车库火焰烟雾检测方法[J]. 计算机工程与应用, 2024, 60(11): 298–308. doi: 10.3778/j.issn.1002-8331.2307-0003.
DU Chen, WANG Xing, DONG Zengshou, et al. Improved YOLOv5s flame and smoke detection method for underground garage[J]. Computer Engineering and Applications, 2024, 60(11): 298–308. doi: 10.3778/j.issn.1002-8331.2307-0003.
|
[3] |
张欣雨, 梁煜, 张为. 融合全局和局部信息的实时烟雾分割算法[J]. 西安电子科技大学学报, 2024, 51(1): 147–156. doi: 10.19665/j.issn1001-2400.20230405.
ZHANG Xinyu, LIANG Yu, and ZHANG Wei. Real-time smoke segmentation algorithm combining global and local information[J]. Journal of Xidian University, 2024, 51(1): 147–156. doi: 10.19665/j.issn1001-2400.20230405.
|
[4] |
CAO Hu, WANG Yueyue, CHEN J, et al. Swin-unet: Unet-like pure transformer for medical image segmentation[C]. The 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 205–218. doi: 10.1007/978-3-031-25066-8_9.
|
[5] |
JIANG Huiyan, DIAO Zhaoshuo, SHI Tianyu, et al. A review of deep learning-based multiple-lesion recognition from medical images: Classification, detection and segmentation[J]. Computers in Biology and Medicine, 2023, 157: 106726. doi: 10.1016/j.compbiomed.2023.106726.
|
[6] |
MIAH M S U, KABIR M M, SARWAR T B, et al. A multimodal approach to cross-lingual sentiment analysis with ensemble of transformer and LLM[J]. Scientific Reports, 2024, 14(1): 9603. doi: 10.1038/s41598-024-60210-7.
|
[7] |
TANG M C S, TING K C, and RASHIDI N H. DenseNet201-based waste material classification using transfer learning approach[J]. Applied Mathematics and Computational Intelligence, 2024, 13(2): 113–120. doi: 10.58915/amci.v13i2.555.
|
[8] |
MIN Hai, ZHANG Yemao, ZHAO Yang, et al. Hybrid feature enhancement network for few-shot semantic segmentation[J]. Pattern Recognition, 2023, 137: 109291. doi: 10.1016/j.patcog.2022.109291.
|
[9] |
CHENG Huixian, HAN Xianfeng, and XIAO Guoqiang. TransRVNet: LiDAR semantic segmentation with transformer[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(6): 5895–5907. doi: 10.1109/TITS.2023.3248117.
|
[10] |
GROSSBERG S. Recurrent neural networks[J]. Scholarpedia, 2013, 8(2): 1888. doi: 10.4249/scholarpedia.1888.
|
[11] |
ZAGORUYKO S and KOMODAKIS N. Paying more attention to attention: Improving the performance of convolutional neural networks via attention transfer[C]. 5th International Conference on Learning Representations, Toulon, France, 2017.
|
[12] |
KHAN S, MUHAMMAD K, HUSSAIN T, et al. DeepSmoke: Deep learning model for smoke detection and segmentation in outdoor environments[J]. Expert Systems with Applications, 2021, 182: 115125. doi: 10.1016/j.eswa.2021.115125.
|
[13] |
HUANG Yonghao, CHEN Leiting, ZHOU Chuan, et al. Model long-range dependencies for multi-modality and multi-view retinopathy diagnosis through transformers[J]. Knowledge-Based Systems, 2023, 271: 110544. doi: 10.1016/j.knosys.2023.110544.
|
[14] |
HUTCHINS D, SCHLAG I, WU Yuhuai, et al. Block-recurrent transformers[C]. The 36th International Conference on Neural Information Processing Systems, New Orleans, USA, 2022: 2409.
|
[15] |
GAO Mingyu, QI Dawei, MU Hongbo, et al. A transfer residual neural network based on ResNet-34 for detection of wood knot defects[J]. Forests, 2021, 12(2): 212. doi: 10.3390/f12020212.
|
[16] |
LI Xiuqing, CHEN Zhenxue, WU Q M J, et al. 3D parallel fully convolutional networks for real-time video wildfire smoke detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(1): 89–103. doi: 10.1109/TCSVT.2018.2889193.
|
[17] |
张俊鹏, 刘辉, 李清荣. 基于FCN-LSTM的工业烟尘图像分割[J]. 计算机工程与科学, 2021, 43(5): 907–916. doi: 10.3969/j.issn.1007-130X.2021.05.018.
ZHANG Junpeng, LIU Hui, and LI Qingrong. An industrial smoke image segmentation method based on FCN-LSTM[J]. Computer Engineering & Science, 2021, 43(5): 907–916. doi: 10.3969/j.issn.1007-130X.2021.05.018.
|
[18] |
YUAN Feiniu, ZHANG Lin, XIA Xue, et al. Deep smoke segmentation[J]. Neurocomputing, 2019, 357: 248–260. doi: 10.1016/j.neucom.2019.05.011.
|
[19] |
YUAN Feiniu, ZHANG Lin, XIA Xue, et al. A wave-shaped deep neural network for smoke density estimation[J]. IEEE Transactions on Image Processing, 2020, 29: 2301–2313. doi: 10.1109/TIP.2019.2946126.
|
[20] |
TAO Huanjie and DUAN Qianyue. Learning discriminative feature representation for estimating smoke density of smoky vehicle rear[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 23136–23147. doi: 10.1109/TITS.2022.3198047.
|
[21] |
YAN Siyuan, ZHANG Jing, and BARNES N. Transmission-guided Bayesian generative model for smoke segmentation[C]. Proceedings of the 36th AAAI Conference on Artificial Intelligence, Vancouver, Canada, 2022: 3009–3017. doi: 10.1609/aaai.v36i3.20207.
|
[22] |
HE Qiqi, YANG Qiuju, and XIE Minghao. HCTNet: A hybrid CNN-transformer network for breast ultrasound image segmentation[J]. Computers in Biology and Medicine, 2023, 155: 106629. doi: 10.1016/j.compbiomed.2023.106629.
|
[23] |
CHEN Jieneng, LU Yongyi, YU Qihang, et al. TransUNet: Transformers make strong encoders for medical image segmentation[J]. arXiv preprint arXiv, 2021: 2102.04306. doi: 10.48550/arXiv.2102.04306.
|
[24] |
GHOSH R and BOVOLO F. An FFT-based CNN-transformer encoder for semantic segmentation of radar sounder signal[C]. Proceedings of SPIE 12267, Image and Signal Processing for Remote Sensing XXVIII, Berlin, Germany, 2022: 122670R. doi: 10.1117/12.2636693.
|
[25] |
LABBIHI I, EL MESLOUHI O, BENADDY M, et al. Combining frequency transformer and CNNs for medical image segmentation[J]. Multimedia Tools and Applications, 2024, 83(7): 21197–21212. doi: 10.1007/s11042-023-16279-9.
|
[26] |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[C]. The 9th International Conference on Learning Representations, 2021.
|
[27] |
ZHENG Sixiao, LU Jiachen, ZHAO Hengshuang, et al. Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 6877–6886. doi: 10.1109/CVPR46437.2021.00681.
|
[28] |
SUN Yu, ZHI Xiyang, JIANG Shikai, et al. Image fusion for the novelty rotating synthetic aperture system based on vision transformer[J]. Information Fusion, 2024, 104: 102163. doi: 10.1016/j.inffus.2023.102163.
|
[29] |
HUANG Zilong, WANG Xinggang, HUANG Lichao, et al. CCNet: Criss-cross attention for semantic segmentation[C]. The IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 603–612. doi: 10.1109/ICCV.2019.00069.
|
[30] |
WANG Xiaolong, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7794–7803. doi: 10.1109/CVPR.2018.00813.
|
[31] |
LONG J, SHELHAMER E, and DARRELL T. Fully convolutional networks for semantic segmentation[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 3431–3440. doi: 10.1109/CVPR.2015.7298965.
|
[32] |
WEN Gang, ZHOU Fangrong, MA Yutang, et al. A dense multi-scale context and asymmetric pooling embedding network for smoke segmentation[J]. IET Computer Vision, 2024, 18(2): 236–246. doi: 10.1049/cvi2.12246.
|
[33] |
ZHANG Yundong, LIU Huiye, and HU Qiang. TransFuse: Fusing transformers and CNNs for medical image segmentation[C]. The 24th International Conference on Medical Image Computing and Computer Assisted Intervention, Strasbourg, France, 2021: 14–24. doi: 10.1007/978-3-030-87193-2_2.
|