Citation: | LI Dongyang, WANG Linyuan, PENG Jinxian, MA Dekui, YAN Bin. A Black-Box Query Adversarial Attack Method for Signal Detection Networks Based on Sparse Subspace Sampling[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2808-2818. doi: 10.11999/JEIT241019 |
[1] |
REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031.
|
[2] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779–788. doi: 10.1109/CVPR.2016.91.
|
[3] |
WANG C Y, BOCHKOVSKIY A, and LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 7464–7475. doi: 10.1109/CVPR52729.2023.00721.
|
[4] |
ZHA Xiong, PENG Hua, QIN Xin, et al. A deep learning framework for signal detection and modulation classification[J]. Sensors, 2019, 19(18): 4042. doi: 10.3390/s19184042.
|
[5] |
VAGOLLARI A, HIRSCHBECK M, and GERSTACKER W. An end-to-end deep learning framework for wideband signal recognition[J]. IEEE Access, 2023, 11: 52899–52922. doi: 10.1109/ACCESS.2023.3280454.
|
[6] |
LI Qing, ZHOU Xin, MENG Xiandong, et al. Lightweight RadioYOLO for radio signal detection[C]. 2022 International Conference on Algorithms, Data Mining, and Information Technology, Xi'an, China, 2022: 117–123. doi: 10.1109/ADMIT57209.2022.00027.
|
[7] |
耿频永, 曹叶文, 赵晓蕾, 等. 基于频率敏感注意力的短波宽带特定信号检测[J]. 数据采集与处理, 2023, 38(1): 63–73. doi: 10.16337/j.1004-9037.2023.01.004.
GENG Pinyong, CAO Yewen, ZHAO Xiaolei, et al. Shortwave wideband specific signal detection based on frequency-sensitive attention[J]. Journal of Data Acquisition and Processing, 2023, 38(1): 63–73. doi: 10.16337/j.1004-9037.2023.01.004.
|
[8] |
李润东. 基于深度学习的通信信号智能盲检测与识别技术研究[D]. [博士论文], 电子科技大学, 2021.
LI Rundong. Research on intelligent blind detection and recognition of communication signals based on deep learning[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2021.
|
[9] |
XIE Cihang, WANG Jianyu, ZHANG Zhishuai, et al. Adversarial examples for semantic segmentation and object detection[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 1378–1387. doi: 10.1109/ICCV.2017.153.
|
[10] |
WANG Derui, LI Chaoran, WEN Sheng, et al. Daedalus: Breaking nonmaximum suppression in object detection via adversarial examples[J]. IEEE Transactions on Cybernetics, 2022, 52(8): 7427–7440. doi: 10.1109/TCYB.2020.3041481.
|
[11] |
ZHU Hegui, SUI Xiaoyan, REN Yuchen, et al. Boosting transferability of targeted adversarial examples with non-robust feature alignment[J]. Expert Systems with Applications, 2023, 227: 120248. doi: 10.1016/j.eswa.2023.120248.
|
[12] |
CHOW K H, LIU Ling, LOPER M, et al. Adversarial objectness gradient attacks in real-time object detection systems[C]. 2020 Second IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications, Atlanta, USA, 2020: 263–272. doi: 10.1109/TPS-ISA50397.2020.00042.
|
[13] |
SADEGHI M and LARSSON E G. Adversarial attacks on deep-learning based radio signal classification[J]. IEEE Wireless Communications Letters, 2019, 8(1): 213–216. doi: 10.1109/LWC.2018.2867459.
|
[14] |
ZHANG Sicheng, FU Jiangzhi, YU Jiarun, et al. Channel-robust class-universal spectrum-focused frequency adversarial attacks on modulated classification models[J]. IEEE Transactions on Cognitive Communications and Networking, 2024, 10(4): 1280–1293. doi: 10.1109/TCCN.2024.3382126.
|
[15] |
TIAN Qiao, ZHANG Sicheng, MAO Shiwen, et al. Adversarial attacks and defenses for digital communication signals identification[J]. Digital Communications and Networks, 2024, 10(3): 756–764. doi: 10.1016/j.dcan.2022.10.010.
|
[16] |
LI Dongyang, WANG Linyuan, XIONG Guangwei, et al. Signal adversarial examples generation for signal detection network via white-box attack[J]. Electronics Letters, 2025, 61(1): e70348. doi: 10.1049.ell2.70348.
|
[17] |
SHIN Y, NAM S W, AN C K, et al. Design of a time-frequency domain matched filter for detection of non-stationary signals[C]. 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing, Salt Lake City, USA, 2001: 3585–3588. doi: 10.1109/ICASSP.2001.940617.
|
[18] |
DIAMANT R. Closed form analysis of the normalized matched filter with a test case for detection of underwater acoustic signals[J]. IEEE Access, 2016, 4: 8225–8235. doi: 10.1109/ACCESS.2016.2630498.
|
[19] |
GARDNER W A. Exploitation of spectral redundancy in cyclostationary signals[J]. IEEE Signal Processing Magazine, 1991, 8(2): 14–36. doi: 10.1109/79.81007.
|
[20] |
ZENG Yonghong and LIANG Yingchang. Maximum-minimum eigenvalue detection for cognitive radio[C]. The 18th International Symposium on Personal, Indoor and Mobile Radio Communications, Athens, Greece, 2007: 1–5. doi: 10.1109/PIMRC.2007.4394211.
|
[21] |
URKOWITZ H. Energy detection of unknown deterministic signals[J]. Proceedings of the IEEE, 1967, 55(4): 523–531. doi: 10.1109/PROC.1967.5573.
|
[22] |
PAPERNOT N, MCDANIEL P, and GOODFELLOW I. Transferability in machine learning: From phenomena to black-box attacks using adversarial samples[EB/OL]. https://arxiv.org/abs/1605.07277, 2016.
|
[23] |
LIU Yanpei, CHEN Xinyun, LIU Chang, et al. Delving into transferable adversarial examples and black-box attacks[C]. The 5th International Conference on Learning Representations, Toulon, France, 2017.
|
[24] |
WANG Zhibo, YANG Hongshan, FENG Yunhe, et al. Towards transferable targeted adversarial examples[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 20534–20543. doi: 10.1109/CVPR52729.2023.01967.
|
[25] |
CHEN Pinyun, ZHANG Huan, SHARMA Y, et al. ZOO: Zeroth order optimization based black-box attacks to deep neural networks without training substitute models[C]. The 10th ACM Workshop on Artificial Intelligence and Security, Dallas, USA, 2017: 15–26. doi: 10.1145/3128572.3140448.
|
[26] |
GUO Chuan, GARDNER J R, YOU Yurong, et al. Simple black-box adversarial attacks[C]. The 36th International Conference on Machine Learning, Long Beach, USA, 2019: 2484–2493.
|
[27] |
ANDRIUSHCHENKO M, CROCE F, FLAMMARION N, et al. Square attack: A query-efficient black-box adversarial attack via random search[C]. The 16th European Conference on Computer Vision, Glasgow, UK, 2020: 484–501. doi: 10.1007/978-3-030-58592-1_29.
|
[28] |
BRENDEL W, RAUBER J, and BETHGE M. Decision-based adversarial attacks: Reliable attacks against black-box machine learning models[C]. The 6th International Conference on Learning Representations, Vancouver, Canada, 2018.
|
[29] |
CHENG Minhao, SINGH S, CHEN P H, et al. Sign-OPT: A query-efficient hard-label adversarial attack[C]. The 8th International Conference on Learning Representations, Addis Ababa, Ethiopia, 2020.
|
[30] |
CHEN Jianbo, JORDAN M I, and WAINWRIGHT M J. HopSkipJumpAttack: A query-efficient decision-based attack[C]. Proceedings of 2020 IEEE Symposium on Security and Privacy, San Francisco, USA, 2020: 1277–1294. doi: 10.1109/SP40000.2020.00045.
|
[31] |
LI Huichen, XU Xiaojun, ZHANG Xiaolu, et al. QEBA: Query-efficient boundary-based blackbox attack[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 1221–1230. doi: 10.1109/CVPR42600.2020.00130.
|
[32] |
SHAMIR A, SAFRAN I, RONEN E, et al. A simple explanation for the existence of adversarial examples with small hamming distance[EB/OL]. https://arxiv.org/abs/1901.10861, 2019.
|
[33] |
CAI Hanqin, LOU Yuchen, MCKENZIE D, et al. A zeroth-order block coordinate descent algorithm for huge-scale black-box optimization[C]. The 38th International Conference on Machine Learning, Graz, Austria, 2021: 1193–1203.
|
[34] |
CAI Hanqin, MCKENZIE D, YIN Wotao, et al. A one-bit, comparison-based gradient estimator[J]. Applied and Computational Harmonic Analysis, 2022, 60: 242–266. doi: 10.1016/j.acha.2022.03.003.
|
[35] |
武越, 苑咏哲, 岳铭煜, 等. 点云配准中多维度信息融合的特征挖掘方法[J]. 计算机研究与发展, 2022, 59(8): 1732–1741. doi: 10.7544/issn1000-1239.20220042.
WU Yue, YUAN Yongzhe, YUE Mingyu, et al. Feature mining method of multi-dimensional information fusion in point cloud registration[J]. Journal of Computer Research and Development, 2022, 59(8): 1732–1741. doi: 10.7544/issn1000-1239.20220042.
|
[36] |
郭宇琦, 李东阳, 尹志宁, 等. 采用1-bit压缩感知的信号识别网络黑盒对抗攻击方法[J]. 信息工程大学学报, 2024, 25(5): 593–600. doi: 10.3969/j.issn.1671-0673.2024.05.014.
GUO Yuqi, LI Dongyang, YIN Zhining, et al. Black-box adversarial attacks on signal recognition networks using 1-bit compressed sensing[J]. Journal of Information Engineering University, 2024, 25(5): 593–600. doi: 10.3969/j.issn.1671-0673.2024.05.014.
|
[37] |
郭宇琦. 无线I/Q信号调制识别神经网络对抗样本生成方法[D]. [硕士论文], 战略支援部队信息工程大学, 2023.
GUO Yuqi. Research on wireless I/Q signal adversarial examples in modulation recognition neural networks[D]. [Master dissertation], PLA Strategy Support Force Information Engineering University, 2023.
|