Citation: | DAI Zheng, LIU Xiaojia, PAN Quan. Research on Weld Defect Detection Method Based on Improved DETR[J]. Journal of Electronics & Information Technology, 2025, 47(7): 2298-2307. doi: 10.11999/JEIT241009 |
[1] |
SONAR T, BALASUBRAMANIAN V, MALARVIZHI S, et al. Maximizing strength and corrosion resistance of InterPulsed TIG welded Superalloy 718 joints by RSM for aerospace applications[J]. CIRP Journal of Manufacturing Science and Technology, 2021, 35: 474–493. doi: 10.1016/j.cirpj.2021.07.013.
|
[2] |
LIU Zhao, LI Xiaoqiang, PAN Lihua, et al. Effects of weld penetration modes on laser welding characteristics of a novel ultra-high strength steel for aerospace application[J]. Journal of Manufacturing Processes, 2023, 90: 111–124. doi: 10.1016/j.jmapro.2023.02.003.
|
[3] |
AGIWAL H, ALI ANSARI M, FRANKE D, et al. Material flow visualization during friction stir welding using high-speed X-ray imaging[J]. Manufacturing Letters, 2022, 34: 62–66. doi: 10.1016/j.mfglet.2022.08.016.
|
[4] |
SCHRICKER K, HELLWIG P, SCHMIDT L, et al. Insight into keyhole and melt pool dynamics in laser welding of zinc-coated steels by means of high-speed synchrotron X-ray imaging[J]. Procedia CIRP, 2024, 124: 454–459. doi: 10.1016/j.procir.2024.08.152.
|
[5] |
GEORGE G S, RAJ MISHRA P, SINHA P, et al. COVID-19 detection on chest X-ray images using Homomorphic Transformation and VGG inspired deep convolutional neural network[J]. Biocybernetics and Biomedical Engineering, 2023, 43(1): 1–16. doi: 10.1016/J.BBE.2022.11.003.
|
[6] |
UPARKAR O, BHARTI J, PATERIYA R K, et al. Vision transformer outperforms deep convolutional neural network-based model in classifying X-ray images[J]. Procedia Computer Science, 2023, 218: 2338–2349. doi: 10.1016/J.PROCS.2023.01.209.
|
[7] |
YUAN Gaojing, CHEN Linshu, CAI Jiahong, et al. A comprehensive overview of object detection based on deep learning[C]. Proceedings of 2024 10th IEEE International Conference on Intelligent Data and Security, New York, America, 2024: 80–85. doi: 10.1109/IDS62739.2024.00023.
|
[8] |
KARBOUJ B, TOPALIAN-RIVAS G A, and KRÜGER J. Comparative performance evaluation of one-stage and two-stage object detectors for screw head detection and classification in disassembly processes[J]. Procedia CIRP, 2024, 122: 527–532. doi: 10.1016/J.PROCIR.2024.01.077.
|
[9] |
REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031.
|
[10] |
CAI Zhaowei and VASCONCELOS N. Cascade R-CNN: Delving into high quality object detection[C]. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake, USA, 2018: 6154–6162. doi: 10.1109/CVPR.2018.00644.
|
[11] |
LIU Ze, LIN Yutong, CAO Yue, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]. Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 9992–10002. doi: 10.1109/ICCV48922.2021.00986.
|
[12] |
GHEORGHE C, DUGULEANA M, BOBOC R G, et al. Analyzing real-time object detection with YOLO algorithm in automotive applications: A review[J]. Computer Modeling in Engineering & Sciences, 2024, 141(3): 1939–1981. doi: 10.32604/CMES.2024.054735.
|
[13] |
CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]. Proceedings of the 16th European Conference on Computer Vision-ECCV 2020, Glasgow, UK, 2020: 213–229. doi: 10.1007/978-3-030-58452-8_13.
|
[14] |
NING Pin, JIN Jin, XU Yuanping, et al. Enhanced detection of glass insulator defects using improved generative modeling and faster RCNN[J]. Procedia CIRP, 2024, 129: 31–36. doi: 10.1016/j.procir.2024.10.007.
|
[15] |
SONWANE S and CHIDDARWAR S. Enhancing weld defect detection and classification with MDCBNet: A multi-scale dense cross block network for improved explainability[J]. NDT & E International, 2024, 142: 103029. doi: 10.1016/j.ndteint.2023.103029.
|
[16] |
ZHAO Wenjie, LI Dan, and XU Feihu. A lightweight weld defect recognition algorithm based on convolutional neural networks[J]. Pattern Analysis and Applications, 2024, 27(3): 94. doi: 10.1007/S10044-024-01315-7.
|
[17] |
GE Qianfeng, YUAN Hao, ZHANG Qinglin, et al. Hyper-Progressive Real-Time Detection Transformer (HPRT-DETR) algorithm for defect detection on metal bipolar plates[J]. International Journal of Hydrogen Energy, 2024, 74: 49–55. doi: 10.1016/J.IJHYDENE.2024.06.028.
|
[18] |
WEI Wanmian, YAN Huang, ZHENG Junchi, et al. YOLOv11-based multi-task learning for enhanced bone fracture detection and classification in X-ray images[J]. Journal of Radiation Research and Applied Sciences, 2025, 18(1): 101309. doi: 10.1016/J.JRRAS.2025.101309.
|
[19] |
郭柏麟, 黄立威, 路遥, 等. 基于脉冲神经网络微调方法的遥感图像目标检测[J]. 遥感学报, 2024, 28(7): 1702–1712. doi: 10.11834/jrs.20243272.
GUO Bailin, HUANG Liwei, LU Yao, et al. Research on Spiking Neural Network fine-tuning method for object detection in remote sensing images[J]. National Remote Sensing Bulletin, 2024, 28(7): 1702–1712. doi: 10.11834/jrs.20243272.
|
[20] |
SOARES R A A, DE OLIVEIRA A C M, DE ALMEIDA RIBEIRO P R, et al. Firearm detection using DETR with multiple self-coordinated neural networks[J]. Neural Computing and Applications, 2024, 36(35): 22013–22022. doi: 10.1007/s00521-024-10373-1.
|
[21] |
赵楚, 段先华, 苏俊楷. 改进Faster RCNN的瓷砖表面瑕疵检测研究[J]. 计算机工程与应用, 2023, 59(14): 201–208. doi: 10.3778/j.issn.1002-8331.2203-0414.
ZHAO Chu, DUAN Xianhua, and SU Junkai. Research on ceramic tile surface defect detection by improved Faster RCNN[J]. Computer Engineering and Applications, 2023, 59(14): 201–208. doi: 10.3778/j.issn.1002-8331.2203-0414.
|
[22] |
YANG Xiaohui, ZHANG Haoran, QU Zhe, et al. Video frame interpolation via residual blocks and feature pyramid networks[J]. IET Image Processing, 2023, 17(4): 1060–1070. doi: 10.1049/ipr2.12695.
|