| Citation: | SU Xin, QIN Zijian, LÜ Jia, QIN Mingyu. Hierarchical Network-Based Multi-Task Learning Method for Fishway Water Level Prediction[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1950-1965. doi: 10.11999/JEIT241003 |
| [1] |
TAN Junjun, SUN Junjian, WANG Yuanyang, et al. Fish community dynamics following the low-head dam removal and newly installed fish passage in a headstream tributary of Jinsha River, Southwest China[J]. Science of the Total Environment, 2024, 954: 176774. doi: 10.1016/j.scitotenv.2024.176774.
|
| [2] |
MARSDEN T, BAUMGARTNER L J, DUFFY D, et al. Evaluation of a new practical low-cost method for prioritising the remediation of fish passage barriers in resource-deficient settings[J]. Ecological Engineering, 2023, 194: 107024. doi: 10.1016/j.ecoleng.2023.107024.
|
| [3] |
CHAUDHARY P, LEITÃO J P, SCHINDLER K, et al. Flood water depth prediction with convolutional temporal attention networks[J]. Water, 2024, 16(9): 1286. doi: 10.3390/w16091286.
|
| [4] |
WAJID M, ABID M K, RAZA A A, et al. Flood prediction system using IOT & artificial neural network[J]. VFAST Transactions on Software Engineering, 2024, 12(1): 210–224. doi: 10.21015/vtse.v12i1.1603.
|
| [5] |
徐增熠, 牛文清, 陈慧, 等. 非线性编码叠加调制的两发一收可见光通信系统研究[J]. 物联网学报, 2022, 6(3): 14–22. doi: 10.11959/j.issn.2096-3750.2021.00275.
XU Zengyi, NIU Wenqing, CHEN Hui, et al. Exploring the nonlinear coded superposed modulation MISO visible light communication system[J]. Chinese Journal on Internet of Things, 2022, 6(3): 14–22. doi 10.11959/j.issn.2096-3750.2021.00275.
|
| [6] |
白卫岗, 盛敏, 杜盼盼. 6G卫星物联网移动性管理: 挑战与关键技术[J]. 物联网学报, 2020, 4(1): 104–110. doi: 10.11959/j.issn.2096-3750.2020.00149.
BAI Weigang, SHENG Min, and DU Panpan. Mobility management of the 6G satellite IoT: Challenges and key techniques[J]. Chinese Journal on Internet of Things, 2020, 4(1): 104–110. doi: 10.11959/j.issn.2096-3750.2020.00149.
|
| [7] |
SU Xin, JIANG Su, and CHOI D. Location privacy protection of maritime mobile terminals[J]. Digital Communications and Networks, 2022, 8(6): 932–941. doi: 10.1016/j.dcan.2021.11.005.
|
| [8] |
宋毅, 张晗奕, 孙丰, 等. PPNet: 基于预先预测的降雨短时预测模型[J]. 电子与信息学报, 2024, 46(2): 492–502. doi: 10.11999/JEIT230547.
SONG Yi, ZHANG Hanyi, SUN Feng, et al. PPNet: A precipitation nowcasting model based on pre-prediction[J]. Journal of Electronics & Information Technology, 2024, 46(2): 492–502. doi: 10.11999/JEIT230547.
|
| [9] |
ZHANG Lincong, ZHANG Mingyang, LIU Xiangyu, et al. 6G Smart fog radio access network: Architecture, key technologies, and research challenges[J]. Digital Communications and Networks, 2024. doi: 10.1016/j.dcan.2024.10.002.
|
| [10] |
SINYUKOVICH V N, GEORGIADI A G, GROISMAN P Y, et al. The variation in the water level of lake Baikal and its relationship with the inflow and outflow[J]. Water, 2024, 16(4): 560. doi: 10.3390/w16040560.
|
| [11] |
OKHRAVI S, ALEMI M, AFZALIMEHR H, et al. Flow resistance at lowland and mountainous rivers[J]. Journal of Hydrology and Hydromechanics, 2023, 71(4): 464–474. doi: 10.2478/johh-2023-0023.
|
| [12] |
ANANDHARUBAN P, LA ROCCA M, and ELANGO L. A novel step function approach for reservoir operation to balance water storage and flood control during extreme rainfall events[J]. Journal of Hydrology, 2024: 130929. doi: 10.1016/j.jhydrol.2024.130929.
|
| [13] |
LIAO Lingxia, ZHAO Changqing, WANG Jian, et al. Accurate and efficient elephant-flow classification based on co-trained models in evolved software-defined networks[J]. Digital Communications and Networks, 2024. doi: 10.1016/j.dcan.2024.10.017.
|
| [14] |
GANORA D, EVANGELISTA G, CORDERO S, et al. Design flood hydrographs: A regional analysis based on flood reduction functions[J]. Hydrological Sciences Journal, 2023, 68(2): 325–340. doi: 10.1080/02626667.2022.2153051.
|
| [15] |
TUFANO R, GUERRIERO L, ANNIBALI CORONA M, et al. Multiscenario flood hazard assessment using probabilistic runoff hydrograph estimation and 2D hydrodynamic modelling[J]. Natural Hazards, 2023, 116(1): 1029–1051. doi: 10.1007/s11069-022-05710-3.
|
| [16] |
段雪源, 付钰, 王坤. 基于VAE-WGAN的多维时间序列异常检测方法[J]. 通信学报, 2022, 43(3): 1–13. doi: 10.11959/j.issn.1000-436x.2022050.
DUAN Xueyan, FU Yu, and WANG Kun. Multi-dimensional time series anomaly detection method based on VAE-WGAN[J]. Journal on Communications, 2022, 43(3): 1–13. doi: 10.11959/j.issn.1000-436x.2022050.
|
| [17] |
ÜNES F, DEMIRCI M, TAŞAR B, et al. Estimating dam reservoir level fluctuations using data-driven techniques[J]. Polish Journal of Environmental Studies, 2019, 28(5): 3451–3462. doi: 10.15244/pjoes/93923.
|
| [18] |
MOURA R, MENDES A, CASCALHO J, et al. Predicting flood events with streaming data: A preliminary approach with GRU and ARIMA[C]. The 3rd International Conference on Optimization, Learning Algorithms and Applications, Ponta Delgada, Portugal, 2024: 319–332. doi: 10.1007/978-3-031-53025-8_22.
|
| [19] |
LI Gang, LIU Zhangjun, ZHANG Jingwen, et al. Bayesian model averaging by combining deep learning models to improve lake water level prediction[J]. Science of the Total Environment, 2024, 906: 167718. doi: 10.1016/j.scitotenv.2023.167718.
|
| [20] |
SHAHABI A and TAHVILDARI N. A deep-learning model for rapid spatiotemporal prediction of coastal water levels[J]. Coastal Engineering, 2024, 190: 104504. doi: 10.1016/j.coastaleng.2024.104504.
|
| [21] |
ZAKARIA M N A, AHMED A N, MALEK M A, et al. Exploring machine learning algorithms for accurate water level forecasting in Muda river, Malaysia[J]. Heliyon, 2023, 9(7): e17689. doi: 10.1016/J.HELIYON.2023.E17689.
|
| [22] |
STEFENON S F, SEMAN L O, AQUINO L S, et al. Wavelet-Seq2Seq-LSTM with attention for time series forecasting of level of dams in hydroelectric power plants[J]. Energy, 2023, 274: 127350. doi: 10.1016/j.energy.2023.127350.
|
| [23] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 6000–6010.
|
| [24] |
STEFENON S F, SEMAN L O, DA SILVA L S A, et al. Hypertuned temporal fusion transformer for multi-horizon time series forecasting of dam level in hydroelectric power plants[J]. International Journal of Electrical Power & Energy Systems, 2024, 157: 109876. doi: 10.1016/j.ijepes.2024.109876.
|
| [25] |
KOW P Y, LIOU J Y, YANG M T, et al. Advancing climate-resilient flood mitigation: Utilizing transformer-LSTM for water level forecasting at pumping stations[J]. Science of the Total Environment, 2024, 927: 172246. doi: 10.1016/j.scitotenv.2024.172246.
|
| [26] |
GUO Shaolei, WEN Yihao, ZHANG Xianqi, et al. Monthly runoff prediction using the VMD-LSTM-Transformer hybrid model: A case study of the Miyun Reservoir in Beijing[J]. Journal of Water and Climate Change, 2023, 14(9): 3221–3236. doi: 10.2166/wcc.2023.257.
|
| [27] |
ULLAH I, ADHIKARI D, SU Xin, et al. Integration of data science with the intelligent IoT (IIoT): Current challenges and future perspectives[J]. Digital Communications and Networks, 2024. doi: 10.1016/j.dcan.2024.02.007.
|
| [28] |
ULLAH F, ULLAH S, SRIVASTAVA G, et al. IDS-INT: Intrusion detection system using transformer-based transfer learning for imbalanced network traffic[J]. Digital Communications and Networks, 2024, 10(1): 190–204. doi: 10.1016/j.dcan.2023.03.008.
|