Citation: | GE Beining, CHEN Nuo, JIN Peng, SU Xin, LU Xiaochun. Research on ECG Pathological Signal Classification Empowered by Diffusion Generative Data[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT241003 |
[1] |
刘明波, 何新叶, 杨晓红, 等. 《中国心血管健康与疾病报告2023》要点解读[J]. 临床心血管病杂志, 2024, 40(8): 599–616. doi: 10.13201/j.issn.1001-1439.2024.08.002.
LIU Mingbo, HE Xinye, YANG Xiaohong, et al. Interpretation of report on cardiovascular health and diseases in China 2023[J]. Journal of Clinical Cardiology, 2024, 40(8): 599–616. doi: 10.13201/j.issn.1001-1439.2024.08.002.
|
[2] |
PENG Huyang, CHANG Xiaohan, YAO Zhenjie, et al. A deep learning framework for ECG denoising and classification[J]. Biomedical Signal Processing and Control, 2024, 94: 106441. doi: 10.1016/j.bspc.2024.106441.
|
[3] |
LI Chengjun, WU Yacen, LIN Haijun, et al. ECG denoising method based on an improved VMD algorithm[J]. IEEE Sensors Journal, 2022, 22(23): 22725–22733. doi: 10.1109/JSEN.2022.3214239.
|
[4] |
MERDJANOVSKA E and RASHKOVSKA A. Comprehensive survey of computational ECG analysis: Databases, methods and applications[J]. Expert Systems with Applications, 2022, 203: 117206. doi: 10.1016/j.dcan.2025.04.001.
|
[5] |
REN Jianlin, ZHANG Ran, CAO Xiaodong, et al. Experimental evaluation of ECG signal denoising methods based on HRV indices and their application in indoor thermal comfort study under different temperatures[J]. Energy and Buildings, 2024, 303: 113797. doi: 10.1016/j.enbuild.2023.113797.
|
[6] |
MA'SUM M A, JATMIKO W, and SUHARTANTO H. Enhanced Tele ECG system using Hadoop framework to deal with big data processing[C]. Proceedings of 2016 International Workshop on Big Data and Information Security, Jakarta, Indonesia, 2016: 121–126. doi: 10.1109/IWBIS.2016.7872900.
|
[7] |
GUPTA V and MITTAL M. KNN and PCA classifier with autoregressive modelling during different ECG signal interpretation[J]. Procedia Computer Science, 2018, 125: 18–24. doi: 10.1016/j.procs.2017.12.005.
|
[8] |
JING Enbiao, ZHANG Haiyang, LI Zhigang, et al. ECG heartbeat classification based on an improved ResNet‐18 model[J]. Computational and Mathematical Methods in Medicine, 2021, 2021: 6649970. doi: 10.1155/2021/6649970.
|
[9] |
KUMAR M A and CHAKRAPANI A. Classification of ECG signal using FFT based improved Alexnet classifier[J]. PLoS One, 2022, 17(9): e0274225. doi: 10.1371/journal.pone.0274225.
|
[10] |
KAMOZAWA H, MUROGA S, and TANAKA M. A detection method of atrial fibrillation from 24‐hour Holter‐ECG using CNN[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2023, 18(4): 577–582. doi: 10.1002/tee.23756.
|
[11] |
邵虹, 荆一烜, 崔文成. 基于扩散生成对抗网络的核磁共振图像与计算机断层扫描图像跨模态转换[J]. 生物医学工程学杂志, 2025, 42(3): 575–584. doi: 10.7507/1001-5515.202404056.
SHAO Hong, JING Yixuan, and CUI Wencheng. Cross modal translation of magnetic resonance imaging and computed tomography images based on diffusion generative adversarial networks[J]. Journal of Biomedical Engineering, 2025, 42(3): 575–584. doi: 10.7507/1001-5515.202404056.
|
[12] |
SIDDIQUE N, PAHEDING S, ELKIN C P, et al. U-net and its variants for medical image segmentation: A review of theory and applications[J]. IEEE Access, 2021, 9: 82031–82057. doi: 10.1109/ACCESS.2021.3086020.
|
[13] |
MERDJANOVSKA E and RASHKOVSKA A. Comprehensive survey of computational ECG analysis: Databases, methods and applications[J]. Expert Systems with Applications, 2022, 203: 117206. doi: 10.1016/j.eswa.2022.117206. (查阅网上资料,本条文献与第4条文献重复,请确认).
|
[14] |
WEN Yihan, MA Xianping, ZHANG Xiaokang, et al. GCD-DDPM: A generative change detection model based on difference-feature-guided DDPM[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5404416. doi: 10.1109/TGRS.2024.3381752.
|
[15] |
SHI Yongyi, XIA Wenjun, WANG Ge, et al. Blind CT image quality assessment using DDPM-derived content and transformer-based evaluator[J]. IEEE Transactions on Medical Imaging, 2024, 43(10): 3559–3569. doi: 10.1109/TMI.2024.3418652.
|
[16] |
BECHINIA H, BENMERZOUG D, and KHLIFA N. Approach based lightweight custom convolutional neural network and fine-tuned MobileNet-V2 for ECG arrhythmia signals classification[J]. IEEE Access, 2024, 12: 40827–40841. doi: 10.1109/ACCESS.2024.3378730.
|
[17] |
SAADATNEJAD S, OVEISI M, and HASHEMI M. LSTM-based ECG classification for continuous monitoring on personal wearable devices[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24(2): 515–523. doi: 10.1109/JBHI.2019.2911367.
|
[18] |
APANDI Z F M, IKEURA R, and HAYAKAWA S. Arrhythmia detection using MIT-BIH dataset: A review[C]. Proceedings of 2018 International Conference on Computational Approach in Smart Systems Design and Applications, Kuching, Malaysia, 2018: 1–5. doi: 10.1109/ICASSDA.2018.8477620.
|