Citation: | CHEN Xiao, QIU Hongbing, LI Yanlong. Adaptively Sparse Federated Learning Optimization Algorithm Based on Edge-assisted Server[J]. Journal of Electronics & Information Technology, 2025, 47(3): 645-656. doi: 10.11999/JEIT240741 |
[1] |
CHENG Nan, WU Shen, WANG Xiucheng, et al. AI for UAV-assisted IoT applications: A comprehensive review[J]. IEEE Internet of Things Journal, 2023, 10(16): 14438–14461. doi: 10.1109/JIOT.2023.3268316.
|
[2] |
ALSELEK M, ALCARAZ-CALERO J M, and WANG Qi. Dynamic AI-IoT: Enabling updatable AI models in ultralow-power 5G IoT devices[J]. IEEE Internet of Things Journal, 2024, 11(8): 14192–14205. doi: 10.1109/JIOT.2023.3340858.
|
[3] |
KALAKOTI R, BAHSI H, and NÕMM S. Improving IoT security with explainable AI: Quantitative evaluation of explainability for IoT botnet detection[J]. IEEE Internet of Things Journal, 2024, 11(10): 18237–18254. doi: 10.1109/JIOT.2024.3360626.
|
[4] |
KUMAR R, JAVEED D, ALJUHANI A, et al. Blockchain-based authentication and explainable AI for securing consumer IoT applications[J]. IEEE Transactions on Consumer Electronics, 2024, 70(1): 1145–1154. doi: 10.1109/TCE.2023.3320157.
|
[5] |
MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]. The 20th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, USA, 2017: 1273–1282.
|
[6] |
LI Xingyu, QU Zhe, TANG Bo, et al. Stragglers are not disasters: A hybrid federated learning framework with delayed gradients[C]. The 21st IEEE International Conference on Machine Learning and Applications (ICMLA), Nassau, Bahamas, 2022: 727–732. doi: 10.1109/ICMLA55696.2022.00121.
|
[7] |
LIANG Kai and WU Youlong. Two-layer coded gradient aggregation with straggling communication links[C]. 2020 IEEE Information Theory Workshop (ITW), Riva del Garda, Italy, 2021: 1–5. doi: 10.1109/ITW46852.2021.9457626.
|
[8] |
LANG N, COHEN A, and SHLEZINGER N. Stragglers-aware low-latency synchronous federated learning via layer-wise model updates[J]. arXiv: 2403.18375, 2024. doi: 10.48550/arXiv.2403.18375.
|
[9] |
MHAISEN N, ABDELLATIF A A, MOHAMED A, et al. Optimal user-edge assignment in hierarchical federated learning based on statistical properties and network topology constraints[J]. IEEE Transactions on Network Science and Engineering, 2022, 9(1): 55–66. doi: 10.1109/TNSE.2021.3053588.
|
[10] |
FENG Chenyuan, YANG H H, HU Deshun, et al. Mobility-aware cluster federated learning in hierarchical wireless networks[J]. IEEE Transactions on Wireless Communications, 2022, 21(10): 8441–8458. doi: 10.1109/TWC.2022.3166386.
|
[11] |
LIM W Y B, NG J S, XIONG Zehui, et al. Decentralized edge intelligence: A dynamic resource allocation framework for hierarchical federated learning[J]. IEEE Transactions on Parallel and Distributed Systems, 2022, 33(3): 536–550. doi: 10.1109/TPDS.2021.3096076.
|
[12] |
KONG J M and SOUSA E. Adaptive ratio-based-threshold gradient sparsification scheme for federated learning[C]. 2023 International Symposium on Networks, Computers and Communications (ISNCC), Doha, Qatar, 2023: 1–5. doi: 10.1109/ISNCC58260.2023.10323644.
|
[13] |
SU Junshen, WANG Xijun, CHEN Xiang, et al. Joint sparsification and quantization for wireless federated learning under communication constraints[C]. 2023 IEEE 24th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Shanghai, China, 2023: 401–405. doi: 10.1109/SPAWC53906.2023.10304559.
|
[14] |
PARK S and CHOI W. Regulated subspace projection based local model update compression for communication-efficient federated learning[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(4): 964–976. doi: 10.1109/JSAC.2023.3242722.
|
[15] |
DHAKAL S, PRAKASH S, YONA Y, et al. Coded federated learning[C]. 2019 IEEE Globecom Workshops (GC Wkshps), Waikoloa, USA, 2019: 1–6. doi: 10.1109/GCWkshps45667.2019.9024521.
|
[16] |
PRAKASH S, DHAKAL S, AKDENIZ M R, et al. Coded computing for low-latency federated learning over wireless edge networks[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(1): 233–250. doi: 10.1109/JSAC.2020.3036961.
|
[17] |
SUN Yuchang, SHAO Jiawei, MAO Yuyi, et al. Stochastic coded federated learning: Theoretical analysis and incentive mechanism design[J]. IEEE Transactions on Wireless Communications, 2024, 23(6): 6623–6638. doi: 10.1109/TWC.2023.3334732.
|
[18] |
BANERJEE S, VU X S, and BHUYAN M. Optimized and adaptive federated learning for straggler-resilient device selection[C]. 2022 International Joint Conference on Neural Networks (IJCNN), Padua, Italy, 2022: 1–9. doi: 10.1109/IJCNN55064.2022.9892777.
|
[19] |
HUANG Peishan, LI Dong, and YAN Zhigang. Wireless federated learning with asynchronous and quantized updates[J]. IEEE Communications Letters, 2023, 27(9): 2393–2397. doi: 10.1109/LCOMM.2023.3294606.
|
[20] |
YAN Xinru, MIAO Yinbin, LI Xinghua, et al. Privacy-preserving asynchronous federated learning framework in distributed IoT[J]. IEEE Internet of Things Journal, 2023, 10(15): 13281–13291. doi: 10.1109/JIOT.2023.3262546.
|
[21] |
YANG Zhigang, ZHANG Xuhua, WU Dapeng, et al. Efficient asynchronous federated learning research in the internet of vehicles[J]. IEEE Internet of Things Journal, 2023, 10(9): 7737–7748. doi: 10.1109/JIOT.2022.3230412.
|
[22] |
DIAO E, DING Jie, and TAROKH V. HeteroFL: Computation and communication efficient federated learning for heterogeneous clients[C]. 9th International Conference on Learning Representations, 2021.
|
[23] |
AL-ABIAD M S, HASSAN M Z, and HOSSAIN M J. Energy-efficient resource allocation for federated learning in NOMA-enabled and relay-assisted internet of things networks[J]. IEEE Internet of Things Journal, 2022, 9(24): 24736–24753. doi: 10.1109/JIOT.2022.3194546.
|
[24] |
TANG Jianhang, NIE Jiangtian, ZHANG Yang, et al. Multi-UAV-assisted federated learning for energy-aware distributed edge training[J]. IEEE Transactions on Network and Service Management, 2024, 21(1): 280–294. doi: 10.1109/TNSM.2023.3298220.
|
[25] |
LI Yuchen, LIANG Weifa, LI Jing, et al. Energy-aware, device-to-device assisted federated learning in edge computing[J]. IEEE Transactions on Parallel and Distributed Systems, 2023, 34(7): 2138–2154. doi: 10.1109/TPDS.2023.3277423.
|
[26] |
高晗, 田育龙, 许封元, 等. 深度学习模型压缩与加速综述[J]. 软件学报, 2021, 32(1): 68–92. doi: 10.13328/j.cnki.jos.006096.
GAO Han, TIAN Yulong, XU Fengyuan, et al. Survey of deep learning model compression and acceleration[J]. Journal of Software, 2021, 32(1): 68–92. doi: 10.13328/j.cnki.jos.006096.
|
[27] |
STRIPELIS D, GUPTA U, VER STEEG G, et al. Federated progressive sparsification (purge, merge, tune)+[J]. arXiv: 2204.12430, 2022. doi: 10.48550/arXiv.2204.12430.
|
1. | 张盛峰,袁强,陈会丹,黄胜. EONs中一种混合路径专有保护算法. 光通信研究. 2021(02): 20-25 . ![]() | |
2. | 胡竣涛,时小虎,马德印. 基于均值漂移和遗传算法的护工调度算法. 广西师范大学学报(自然科学版). 2021(03): 27-39 . ![]() | |
3. | 巨子琪,兰宏伟,宰晨光. 轨道交通车辆踏面制动闸调器螺杆连接优化研究. 自动化与仪器仪表. 2020(12): 70-74 . ![]() | |
4. | 赵必游,张善辉,王进帅. 配电系统弹性光网络频谱整理优化算法. 电信科学. 2019(02): 43-50 . ![]() | |
5. | 黄正鹏,王力,张仕学,余廷忠,张起荣. 基于传统遗传和数据压缩算法的冗余光纤数据存储优化. 激光杂志. 2019(03): 135-139 . ![]() | |
6. | 程光德,肖瑜. 基于用户满意度的光网络数据路由机制设计. 激光杂志. 2019(04): 118-121 . ![]() | |
7. | 王鹏辉,张宁,肖明明. 基于节点重要度的路由选择与频谱分配算法. 计算机工程与应用. 2019(13): 106-111+259 . ![]() | |
8. | 马学森,朱建,谈杰,唐昊,周江涛. 多头绒泡菌预处理的改进Q学习算法求解最短路径问题. 电子测量与仪器学报. 2019(05): 148-157 . ![]() | |
9. | 施达雅,余庚. 弹性光网络中碎片问题的研究. 光通信技术. 2018(02): 16-19 . ![]() | |
10. | 田建勇,石林江. 基于Kalman算法的光纤网络流量在线预测模型. 激光杂志. 2018(09): 110-114 . ![]() | |
11. | 刘焕淋,胡浩,熊翠连,陈勇,向敏,马跃. 基于时频联合碎片感知的资源均衡虚拟光网络映射算法. 电子与信息学报. 2018(10): 2345-2351 . ![]() | |
12. | 刘焕淋,张明佳,陈勇,王欣. 频谱可用性和保护带宽共享度感知的弹性光网络生存性多路径策略. 电子与信息学报. 2017(10): 2472-2478 . ![]() | |
13. | 李汪丽. 通信链接无线终端资源传输路径目标识别仿真. 计算机仿真. 2017(10): 177-180 . ![]() | |
14. | 魏星. 基于改进人工鱼群算法的光网络最优环路径搜索研究. 计算机与数字工程. 2017(04): 650-654 . ![]() |