Advanced Search
Turn off MathJax
Article Contents
CHEN Lei, YANG Jibin, CAO Tieyong, ZHENG Yunfei, WANG Yang, ZHANG Bo, LIN Zhenhua, LI Wenbin. A Self-distillation Object Segmentation Method Based on Transformer Feature Pyramid[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240735
Citation: CHEN Lei, YANG Jibin, CAO Tieyong, ZHENG Yunfei, WANG Yang, ZHANG Bo, LIN Zhenhua, LI Wenbin. A Self-distillation Object Segmentation Method Based on Transformer Feature Pyramid[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240735

A Self-distillation Object Segmentation Method Based on Transformer Feature Pyramid

doi: 10.11999/JEIT240735
Funds:  The National Natural Science Foundation of China (61801512, 62071484), The Natural Science Foundation of Jiangsu Province (BK20180080), The Army Engineering University of PLA Basic Frontier Project (KYZYJKQTZQ23001), The University of National Defense Science and Technology 2021 School Scientific Research Project (ZK21-43)
  • Received Date: 2024-08-26
  • Rev Recd Date: 2024-12-16
  • Available Online: 2024-12-20
  • To improve the performance of object segmentation without increasing the quantity of parameters, a self-distillation object segmentation method based on Transformer feature pyramid is proposed, which enhances the utility of Transformer segmentation model. First, a pixel-wise object segmentation model is constructed using Swin Transformer as the backbone network. Then, the auxiliary branch is designed as a combination of Densely connected Atrous Spatial Pyramid Pooling (DenseASPP), Adjacent Feature Fusion Modules (AFFM) and the scoring module, which guide the main network through self-distillation. Finally, a top-down learning strategy is used to guide model learning to ensure consistency in self-distillation. The experiments on four famous public datasets show that the proposed method can effectively improve the accuracy of object segmentation on four public datasets, with a near 1.6% increase in Fβ compared to the Transformer Knowledge Distillation (TKD) method on the Camouflage Object Detection (COD) dataset.
  • loading
  • [1]
    吕岳, 周浙泉, 吕淑静. 基于双层解耦策略和注意力机制的遮挡目标分割[J]. 电子与信息学报, 2023, 45(1): 335–343. doi: 10.11999/JEIT211288.

    LÜ Yue, ZHOU Zhequan and LÜ Shujing. Occluded object segmentation based on bilayer decoupling strategy and attention mechanism[J]. Journal of Electronics & Information Technology, 2023, 45(1): 335–343. doi: 10.11999/JEIT211288.
    [2]
    ZHENG Yunfei, ZHANG Xiongwei, WANG Feng, et al. Detection of people with camouflage pattern via dense deconvolution network[J]. IEEE Signal Processing Letters, 2019, 26(1): 29–33. doi: 10.1109/LSP.2018.2825959.
    [3]
    任莎莎, 刘琼. 小目标特征增强图像分割算法[J]. 电子学报, 2022, 50(8): 1894–1904. doi: 10.12263/DZXB.20211123.

    REN Shasha and LIU Qiong. A tiny target feature enhancement algorithm for semantic segmentation[J]. Acta Electronica Sinica, 2022, 50(8): 1894–1904. doi: 10.12263/DZXB.20211123.
    [4]
    梁新宇, 权冀川, 杨辉, 等. 多尺度特征提取和多层次注意力机制的迷彩伪装目标分割算法[J]. 计算机辅助设计与图形学学报, 2022, 34(5): 683–692. doi: 10.3724/SP.J.1089.2022.19000.

    LIANG Xinyu, QUAN Jichuan, YANG Hui, et al. Camouflage target segmentation algorithm using multi-scale feature extraction and multi-level attention mechanism[J]. Journal of Computer-Aided Design & Computer Graphics, 2022, 34(5): 683–692. doi: 10.3724/SP.J.1089.2022.19000.
    [5]
    LI Xiangtai, DING Henghui, YUAN Haobo, et al. Transformer-based visual segmentation: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(12): 10138–10163. doi: 10.1109/TPAMI.2024.3434373.
    [6]
    LIU Ze, LIN Yutong, CAO Yue, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]. Proceedings of 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 9992–10002. doi: 10.1109/ICCV48922.2021.00986.
    [7]
    CHEN Lei, CAO Tieyong, ZHENG Yunfei, et al. A self‐distillation object segmentation method via frequency domain knowledge augmentation[J]. IET Computer Vision, 2023, 17(3): 341–351. doi: 10.1049/cvi2.12170.
    [8]
    邵仁荣, 刘宇昂, 张伟, 等. 深度学习中知识蒸馏研究综述[J]. 计算机学报, 2022, 45(8): 1638–1673. doi: 10.11897/SP.J.1016.2022.01638.

    SHAO Renrong, LIU Yuang, ZHANG Wei, et al. A survey of knowledge distillation in deep learning[J]. Chinese Journal of Computer, 2022, 45(8): 1638–1673. doi: 10.11897/SP.J.1016.2022.01638.
    [9]
    WU Di, CHEN Pengfei, YU Xuehui, et al. Spatial self-distillation for object detection with inaccurate bounding boxes[C]. Proceedings of 2023 IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 6832–6842. doi: 10.1109/ICCV51070.2023.00631.
    [10]
    LIN Sihao, XIE Hongwei, WANG Bing, et al. Knowledge distillation via the target-aware transformer[C]. Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 10905–10914. doi: 10.1109/CVPR52688.2022.01064.
    [11]
    LIU Ruiping, YANG Kailun, ROITBERG A, et al. TransKD: Transformer knowledge distillation for efficient semantic segmentation[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(12): 20933–20949. doi: 10.1109/TITS.2024.3455416.
    [12]
    YANG Maoke, YU Kun, ZHANG Chi, et al. DenseASPP for semantic segmentation in street scenes[C]. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 3684–3692. doi: 10.1109/CVPR.2018.00388.
    [13]
    ZHENG Yunfei, SUN Meng, WANG Xiaobing, et al. Self-distillation object segmentation via pyramid knowledge representation and transfer[J]. Multimedia Systems, 2023, 29(5): 2615–2631. doi: 10.1007/s00530-023-01121-x.
    [14]
    ZHANG Linfeng, SONG Jiebo, GAO Anni, et al. Be your own teacher: Improve the performance of convolutional neural networks via self‐distillation[C]. Proceedings of 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 3712–3721. doi: 10.1109/ICCV.2019.00381.
    [15]
    CHENG Mingming, MITRA N J, HUANG Xiaolei, et al. SalientShape: Group saliency in image collections[J]. The Visual Computer, 2014, 30(4): 443–453. doi: 10.1007/s00371-013-0867-4.
    [16]
    ZHAI Qiang, LI Xin, YANG Fan, et al. Mutual graph learning for camouflaged object detection[C]. Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA 2021: 12992–13002. doi: 10.1109/CVPR46437.2021.01280.
    [17]
    WANG Yangtao, SHEN Xi, YUAN Yuan, et al. TokenCut: Segmenting objects in images and videos with self-supervised transformer and normalized cut[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(12): 15790–15801. doi: 10.1109/TPAMI.2023.3305122.
    [18]
    KIRILLOV A, MINTUN E, RAVI N, et al. Segment anything[C]. Proceedings of 2023 IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 2023: 3992–4003. doi: 10.1109/ICCV51070.2023.00371.
    [19]
    JI Wei, LI Jingjing, BI Qi, et al. Segment anything is not always perfect: An investigation of SAM on different real-world applications[J]. Machine Intelligence Research, 2024, 21(4): 617–630. doi: 10.1007/s11633-023-1385-0.
    [20]
    YANG Chuanguang, AN Zhulin, ZHOU Helong, et al. Online knowledge distillation via mutual contrastive learning for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(8): 10212–10227. doi: 10.1109/TPAMI.2023.3257878.
    [21]
    CHEN Lei, CAO Tieyong, ZHENG Yunfei, et al. A non-negative feedback self-distillation method for salient object detection[J]. PeerJ Computer Science, 2023, 9: e1435. doi: 10.7717/peerj-cs.1435.
    [22]
    FAN Dengping, JI Gepeng, SUN Guolei, et al. Camouflaged object detection[C]. Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 2774–2784. doi: 10.1109/CVPR42600.2020.00285.
    [23]
    YANG Chuan, ZHANG Lihe, LU Huchuan, et al. Saliency detection via graph based manifold ranking[C]. Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 3166–3173. doi: 10.1109/CVPR.2013.407.
    [24]
    FAN Dengping, CHENG Mingming, LIU Jiangjiang, et al. Salient objects in clutter: Bringing salient object detection to the foreground[C]. Proceedings of the 15th European Conference on Computer Vision, Munich, Germany, 2018: 186–202. doi: 10.1007/978-3-030-01267-0_12.
    [25]
    LI Xia, ZHONG Zhisheng, WU Jianlong, et al. Expectation‐maximization attention networks for semantic segmentation[C]. Proceedings of 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 9166–9175. doi: 10.1109/ICCV.2019.00926.
    [26]
    HUANG Zilong, WANG Xinggang, HUANG Lichao, et al. CCNeT: Criss-cross attention for semantic segmentation[C]. Proceedings of 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 603–612. doi: 10.1109/ICCV.2019.00069.
    [27]
    ZHAO Xiaoqi, PANG Youwei, ZHANG Lihe, et al. Suppress and balance: A simple gated network for salient object detection[C]. Proceedings of the 16th European Conference on Computer Vision, Glasgow, UK, 2020: 35–51. doi: 10.1007/978-3-030-58536-5_3.
    [28]
    WU Zhe, SU Li and HUANG Qingming. Cascaded partial decoder for fast and accurate salient object detection[C]. Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 3902–3911. doi: 10.1109/CVPR.2019.00403.
    [29]
    WANG Liansheng, CHEN Rongzhen, ZHU Lei, et al. Deep sub-region network for salient object detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(2): 728–741. doi: 10.1109/TCSVT.2020.2988768.
    [30]
    WU Yuhuan, LIU Yun, ZHANG Le, et al. EDN: Salient object detection via extremely-downsampled network[J]. IEEE Transactions on Image Processing, 2022, 31: 3125–3136. doi: 10.1109/TIP.2022.3164550.
    [31]
    LIU Jiangjiang, HOU Qibin, LIU Zhiang, et al. PoolNet+: Exploring the potential of pooling for salient object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(1): 887–904. doi: 10.1109/TPAMI.2021.3140168.
    [32]
    HOU Yuenan, MA Zheng, LIU Chunxiao, et al. Learning lightweight lane detection CNNs by self‐attention distillation[C]. Proceedings of 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 1013–1021. doi: 10.1109/ICCV.2019.00110.
    [33]
    SUN Dawei, YAO Anbang, ZHOU Aojun, et al. Deeply‐supervised knowledge synergy[C]. Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 6990–6999. doi: 10.1109/CVPR.2019.00716.
    [34]
    LI Duo and CHEN Qifeng. Dynamic hierarchical mimicking towards consistent optimization objectives[C]. Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 7639–7648. doi: 10.1109/CVPR42600.2020.00766.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article views (19) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return