Citation: | CHEN Lei, YANG Jibin, CAO Tieyong, ZHENG Yunfei, WANG Yang, ZHANG Bo, LIN Zhenhua, LI Wenbin. A Self-distillation Object Segmentation Method Based on Transformer Feature Pyramid[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240735 |
[1] |
吕岳, 周浙泉, 吕淑静. 基于双层解耦策略和注意力机制的遮挡目标分割[J]. 电子与信息学报, 2023, 45(1): 335–343. doi: 10.11999/JEIT211288.
LÜ Yue, ZHOU Zhequan and LÜ Shujing. Occluded object segmentation based on bilayer decoupling strategy and attention mechanism[J]. Journal of Electronics & Information Technology, 2023, 45(1): 335–343. doi: 10.11999/JEIT211288.
|
[2] |
ZHENG Yunfei, ZHANG Xiongwei, WANG Feng, et al. Detection of people with camouflage pattern via dense deconvolution network[J]. IEEE Signal Processing Letters, 2019, 26(1): 29–33. doi: 10.1109/LSP.2018.2825959.
|
[3] |
任莎莎, 刘琼. 小目标特征增强图像分割算法[J]. 电子学报, 2022, 50(8): 1894–1904. doi: 10.12263/DZXB.20211123.
REN Shasha and LIU Qiong. A tiny target feature enhancement algorithm for semantic segmentation[J]. Acta Electronica Sinica, 2022, 50(8): 1894–1904. doi: 10.12263/DZXB.20211123.
|
[4] |
梁新宇, 权冀川, 杨辉, 等. 多尺度特征提取和多层次注意力机制的迷彩伪装目标分割算法[J]. 计算机辅助设计与图形学学报, 2022, 34(5): 683–692. doi: 10.3724/SP.J.1089.2022.19000.
LIANG Xinyu, QUAN Jichuan, YANG Hui, et al. Camouflage target segmentation algorithm using multi-scale feature extraction and multi-level attention mechanism[J]. Journal of Computer-Aided Design & Computer Graphics, 2022, 34(5): 683–692. doi: 10.3724/SP.J.1089.2022.19000.
|
[5] |
LI Xiangtai, DING Henghui, YUAN Haobo, et al. Transformer-based visual segmentation: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(12): 10138–10163. doi: 10.1109/TPAMI.2024.3434373.
|
[6] |
LIU Ze, LIN Yutong, CAO Yue, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]. Proceedings of 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 9992–10002. doi: 10.1109/ICCV48922.2021.00986.
|
[7] |
CHEN Lei, CAO Tieyong, ZHENG Yunfei, et al. A self‐distillation object segmentation method via frequency domain knowledge augmentation[J]. IET Computer Vision, 2023, 17(3): 341–351. doi: 10.1049/cvi2.12170.
|
[8] |
邵仁荣, 刘宇昂, 张伟, 等. 深度学习中知识蒸馏研究综述[J]. 计算机学报, 2022, 45(8): 1638–1673. doi: 10.11897/SP.J.1016.2022.01638.
SHAO Renrong, LIU Yuang, ZHANG Wei, et al. A survey of knowledge distillation in deep learning[J]. Chinese Journal of Computer, 2022, 45(8): 1638–1673. doi: 10.11897/SP.J.1016.2022.01638.
|
[9] |
WU Di, CHEN Pengfei, YU Xuehui, et al. Spatial self-distillation for object detection with inaccurate bounding boxes[C]. Proceedings of 2023 IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 6832–6842. doi: 10.1109/ICCV51070.2023.00631.
|
[10] |
LIN Sihao, XIE Hongwei, WANG Bing, et al. Knowledge distillation via the target-aware transformer[C]. Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 10905–10914. doi: 10.1109/CVPR52688.2022.01064.
|
[11] |
LIU Ruiping, YANG Kailun, ROITBERG A, et al. TransKD: Transformer knowledge distillation for efficient semantic segmentation[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(12): 20933–20949. doi: 10.1109/TITS.2024.3455416.
|
[12] |
YANG Maoke, YU Kun, ZHANG Chi, et al. DenseASPP for semantic segmentation in street scenes[C]. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 3684–3692. doi: 10.1109/CVPR.2018.00388.
|
[13] |
ZHENG Yunfei, SUN Meng, WANG Xiaobing, et al. Self-distillation object segmentation via pyramid knowledge representation and transfer[J]. Multimedia Systems, 2023, 29(5): 2615–2631. doi: 10.1007/s00530-023-01121-x.
|
[14] |
ZHANG Linfeng, SONG Jiebo, GAO Anni, et al. Be your own teacher: Improve the performance of convolutional neural networks via self‐distillation[C]. Proceedings of 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 3712–3721. doi: 10.1109/ICCV.2019.00381.
|
[15] |
CHENG Mingming, MITRA N J, HUANG Xiaolei, et al. SalientShape: Group saliency in image collections[J]. The Visual Computer, 2014, 30(4): 443–453. doi: 10.1007/s00371-013-0867-4.
|
[16] |
ZHAI Qiang, LI Xin, YANG Fan, et al. Mutual graph learning for camouflaged object detection[C]. Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA 2021: 12992–13002. doi: 10.1109/CVPR46437.2021.01280.
|
[17] |
WANG Yangtao, SHEN Xi, YUAN Yuan, et al. TokenCut: Segmenting objects in images and videos with self-supervised transformer and normalized cut[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(12): 15790–15801. doi: 10.1109/TPAMI.2023.3305122.
|
[18] |
KIRILLOV A, MINTUN E, RAVI N, et al. Segment anything[C]. Proceedings of 2023 IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 2023: 3992–4003. doi: 10.1109/ICCV51070.2023.00371.
|
[19] |
JI Wei, LI Jingjing, BI Qi, et al. Segment anything is not always perfect: An investigation of SAM on different real-world applications[J]. Machine Intelligence Research, 2024, 21(4): 617–630. doi: 10.1007/s11633-023-1385-0.
|
[20] |
YANG Chuanguang, AN Zhulin, ZHOU Helong, et al. Online knowledge distillation via mutual contrastive learning for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(8): 10212–10227. doi: 10.1109/TPAMI.2023.3257878.
|
[21] |
CHEN Lei, CAO Tieyong, ZHENG Yunfei, et al. A non-negative feedback self-distillation method for salient object detection[J]. PeerJ Computer Science, 2023, 9: e1435. doi: 10.7717/peerj-cs.1435.
|
[22] |
FAN Dengping, JI Gepeng, SUN Guolei, et al. Camouflaged object detection[C]. Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 2774–2784. doi: 10.1109/CVPR42600.2020.00285.
|
[23] |
YANG Chuan, ZHANG Lihe, LU Huchuan, et al. Saliency detection via graph based manifold ranking[C]. Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 3166–3173. doi: 10.1109/CVPR.2013.407.
|
[24] |
FAN Dengping, CHENG Mingming, LIU Jiangjiang, et al. Salient objects in clutter: Bringing salient object detection to the foreground[C]. Proceedings of the 15th European Conference on Computer Vision, Munich, Germany, 2018: 186–202. doi: 10.1007/978-3-030-01267-0_12.
|
[25] |
LI Xia, ZHONG Zhisheng, WU Jianlong, et al. Expectation‐maximization attention networks for semantic segmentation[C]. Proceedings of 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 9166–9175. doi: 10.1109/ICCV.2019.00926.
|
[26] |
HUANG Zilong, WANG Xinggang, HUANG Lichao, et al. CCNeT: Criss-cross attention for semantic segmentation[C]. Proceedings of 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 603–612. doi: 10.1109/ICCV.2019.00069.
|
[27] |
ZHAO Xiaoqi, PANG Youwei, ZHANG Lihe, et al. Suppress and balance: A simple gated network for salient object detection[C]. Proceedings of the 16th European Conference on Computer Vision, Glasgow, UK, 2020: 35–51. doi: 10.1007/978-3-030-58536-5_3.
|
[28] |
WU Zhe, SU Li and HUANG Qingming. Cascaded partial decoder for fast and accurate salient object detection[C]. Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 3902–3911. doi: 10.1109/CVPR.2019.00403.
|
[29] |
WANG Liansheng, CHEN Rongzhen, ZHU Lei, et al. Deep sub-region network for salient object detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(2): 728–741. doi: 10.1109/TCSVT.2020.2988768.
|
[30] |
WU Yuhuan, LIU Yun, ZHANG Le, et al. EDN: Salient object detection via extremely-downsampled network[J]. IEEE Transactions on Image Processing, 2022, 31: 3125–3136. doi: 10.1109/TIP.2022.3164550.
|
[31] |
LIU Jiangjiang, HOU Qibin, LIU Zhiang, et al. PoolNet+: Exploring the potential of pooling for salient object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(1): 887–904. doi: 10.1109/TPAMI.2021.3140168.
|
[32] |
HOU Yuenan, MA Zheng, LIU Chunxiao, et al. Learning lightweight lane detection CNNs by self‐attention distillation[C]. Proceedings of 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 1013–1021. doi: 10.1109/ICCV.2019.00110.
|
[33] |
SUN Dawei, YAO Anbang, ZHOU Aojun, et al. Deeply‐supervised knowledge synergy[C]. Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 6990–6999. doi: 10.1109/CVPR.2019.00716.
|
[34] |
LI Duo and CHEN Qifeng. Dynamic hierarchical mimicking towards consistent optimization objectives[C]. Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 7639–7648. doi: 10.1109/CVPR42600.2020.00766.
|