Citation: | HAO Chen, GUANGYAO Zhou, QIANTONG Wang, BIN Gao, WENZHI Wang, HAO Tang. Consistent Generative Adversarial Based on Building Change Detection Data Generation Technology for Multi-temporal Remote Sensing Imagery[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240720 |
[1] |
NASTASE I N A, MOLDOVANU S, and MORARU L. Deep learning-based segmentation of breast masses using convolutional neural networks[J]. Journal of Physics: Conference Series, 2024, 2701(1): 012005. doi: 10.1088/1742-6596/2701/1/012005.
|
[2] |
刘美琴, 王子麟. 基于域适应的图像语义分割综述[J]. 北京交通大学学报, 2024, 48(2): 1–9. doi: 10.11860/j.issn.1673-0291.20230120.
LIU Meiqin and WANG Zilin. A review on image semantic segmentation based on domain adaptation[J]. Journal of Beijing Jiaotong University, 2024, 48(2): 1–9. doi: 10.11860/j.issn.1673-0291.20230120.
|
[3] |
EL-MAGD S A A, MASOUD A M, HASSAN H S, et al. Towards understanding climate change: Impact of land use indices and drainage on land surface temperature for valley drainage and non-drainage areas[J]. Journal of Environmental Management, 2024, 350: 119636. doi: 10.1016/j.jenvman.2023.119636.
|
[4] |
HOSSAIN M S, KHAN M A H, OLUWAJUWON T V, et al. Spatiotemporal change detection of land use land cover (LULC) in Fashiakhali wildlife sanctuary (FKWS) impact area, Bangladesh, employing multispectral images and GIS[J]. Modeling Earth Systems and Environment, 2023, 9(3): 3151–3173. doi: 10.1007/s40808-022-01653-7.
|
[5] |
何自芬, 史本杰, 张印辉, 等. 多注意力融合的环高原湖泊遥感影像分割[J]. 电子学报, 2023, 51(4): 885–895. doi: 10.12263/DZXB.20220085.
HE Zifen, SHI Benjie, ZHANG Yinhui, et al. Remote sensing image segmentation of around plateau lakes based on multi-attention fusion[J]. Acta Electronica Sinica, 2023, 51(4): 885–895. doi: 10.12263/DZXB.20220085.
|
[6] |
张冬梅, 李石磊. 一种显著性检测提取高分遥感影像建筑物的方法[J]. 测绘与空间地理信息, 2024, 47(6): 97–101. doi: 10.3969/j.issn.1672-5867.2024.06.029.
ZHANG Dongmei and LI Shilei. A saliency detection method for extracting buildings from high-resolution remote sensing images[J]. Geomatics & Spatial Information Technology, 2024, 47(6): 97–101. doi: 10.3969/j.issn.1672-5867.2024.06.029.
|
[7] |
MEI Jie, ZHENG Yibo, and CHENG Mingming. D2ANet: Difference-aware attention network for multi-level change detection from satellite imagery[J]. Computational Visual Media, 2023, 9(3): 563–579. doi: 10.1007/s41095-022-0325-1.
|
[8] |
LIAO Cheng, HU Han, YUAN Xuekun, et al. BCE-Net: Reliable building footprints change extraction based on historical map and up-to-date images using contrastive learning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 201: 138–152. doi: 10.1016/j.isprsjprs.2023.05.011.
|
[9] |
KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. Proceedings of the 26th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2012: 1097–1105.
|
[10] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
|
[11] |
HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 2261–2269. doi: 10.1109/CVPR.2017.243.
|
[12] |
SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. 3rd International Conference on Learning Representations, San Diego, USA, 2015. doi: 10.48550/arXiv.1409.1556.
|
[13] |
DEMIRCI M Y, BEŞLI N, and GÜMÜŞÇÜ A. An improved hybrid solar cell defect detection approach using generative adversarial networks and weighted classification[J]. Expert Systems with Applications, 2024, 252: 124230. doi: 10.1016/j.eswa.2024.124230.
|
[14] |
刘少鹏, 赵慧民, 洪佳明, 等. 面向医学图像生成的鲁棒条件生成对抗网络[J]. 电子学报, 2023, 51(2): 427–437. doi: 10.12263/DZXB.20210051.
LIU Shaopeng, ZHAO Huimin, HONG Jiaming, et al. Medical image synthesis using robust conditional GAN[J]. Acta Electronica Sinica, 2023, 51(2): 427–437. doi: 10.12263/DZXB.20210051.
|
[15] |
STANCIU D C and IONESCU B. Autoencoder-based data augmentation for deepfake detection[C]. Proceedings of the 2nd ACM International Workshop on Multimedia AI against Disinformation, Thessaloniki, Greece, 2023: 19–27. doi: 10.1145/3592572.3592840.
|
[16] |
YANG Suorong, XIAO Weikang, ZHANG Mengchen, et al. Image data augmentation for deep learning: A survey[EB/OL]. https://arxiv.org/abs/2204.08610, 2022.
|
[17] |
OUBARA A, WU Falin, AMAMRA A, et al. Survey on remote sensing data augmentation: Advances, challenges, and future perspectives[C]. 5th Conference on Computing Systems and Applications, Cham, Switzerland, 2022: 95–104. doi: 10.1007/978-3-031-12097-8_9.
|
[18] |
CRESWELL A, WHITE T, DUMOULIN V, et al. Generative adversarial networks: An overview[J]. IEEE Signal Processing Magazine, 2018, 35(1): 53–65. doi: 10.1109/MSP.2017.2765202.
|
[19] |
BOWLES C, CHEN Liang, GUERRERO R, et al. GAN augmentation: Augmenting training data using generative adversarial networks[EB/OL]. https://arxiv.org/abs/1810.10863, 2018.
|
[20] |
DOERSCH C. Tutorial on variational autoencoders[EB/OL]. https://arxiv.org/abs/1606.05908, 2016.
|
[21] |
WANG Yinglin, ZHAO Jianhui, GUO Zhengwei, et al. Soil moisture inversion based on data augmentation method using multi-source remote sensing data[J]. Remote Sensing, 2023, 15(7): 1899. doi: 10.3390/rs15071899.
|
[22] |
HUANG Rui, WANG Ruofei, GUO Qing, et al. Background-mixed augmentation for weakly supervised change detection[C]. Proceedings of the 37th AAAI Conference on Artificial Intelligence, Washington, USA, 2023: 7919–7927. doi: 10.1609/aaai.v37i7.25958.
|
[23] |
但志平, 方帅领, 孙航, 等. 基于双判别器异构CycleGAN框架下多阶通道注意力校准的室外图像去雾[J]. 电子学报, 2023, 51(9): 2558–2571. doi: 10.12263/DZXB.20211337.
DAN Zhiping, FANG Shuailing, SUN Hang, et al. Outdoor image dehazing based on multi-order channel attention calibration using a dual-discriminator heterogeneous CycleGAN framework[J]. Acta Electronica Sinica, 2023, 51(9): 2558–2571. doi: 10.12263/DZXB.20211337.
|
[24] |
马宾, 王一利, 徐健, 等. 基于双向生成对抗网络的图像感知哈希算法[J]. 电子学报, 2023, 51(5): 1405–1412. doi: 10.12263/DZXB.20221224.
MA Bin, WANG Yili, XU Jian, et al. An image perceptual hash algorithm based on bidirectional generative adversarial network[J]. Acta Electronica Sinica, 2023, 51(5): 1405–1412. doi: 10.12263/DZXB.20221224.
|
[25] |
贾童瑶, 卓力, 李嘉锋, 等. 基于深度学习的单幅图像去雾研究进展[J]. 电子学报, 2023, 51(1): 231–245. doi: 10.12263/DZXB.20220838.
JIA Tongyao, ZHUO Li, LI Jiafeng, et al. Research advances on deep learning based single image dehazing[J]. Acta Electronica Sinica, 2023, 51(1): 231–245. doi: 10.12263/DZXB.20220838.
|
[26] |
李滔, 董秀成, 林宏伟. 基于深监督跨尺度注意力网络的深度图像超分辨率重建[J]. 电子学报, 2023, 51(1): 128–138. doi: 10.12263/DZXB.20210659.
LI Tao, DONG Xiucheng, and LIN Hongwei. Depth map super-resolution reconstruction based on deeply supervised cross-scale attention network[J]. Acta Electronica Sinica, 2023, 51(1): 128–138. doi: 10.12263/DZXB.20210659.
|
[27] |
JI Shunping, WEI Shiqing, and LU Meng. Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(1): 574–586. doi: 10.1109/tgrs.2018.2858817.
|
[28] |
LI Xuan, DUAN Haibin, ZHANG Hui, et al. Data augmentation using image generation for change detection[C]. 2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence (DTPI), Beijing, China, 2021: 188–191. doi: 10.1109/DTPI52967.2021.9540199.
|
[29] |
VARGHESE A, GUBBI J, RAMASWAMY A, et al. ChangeNet: A deep learning architecture for visual change detection[C]. Proceedings of the 15th European Conference on Computer Vision, Munich, Germany, 2018: 129–145. doi: 10.1007/978-3-030-11012-3_10.
|
[30] |
SHAFIQUE A, CAO Guo, KHAN Z, et al. Deep learning-based change detection in remote sensing images: A review[J]. Remote Sensing, 2022, 14(4): 871. doi: 10.3390/rs14040871.
|
[31] |
张良培, 武辰. 多时相遥感影像变化检测的现状与展望[J]. 测绘学报, 2017, 46(10): 1447–1458. doi: 10.11947/j.AGCS.2017.20170340.
ZHANG Liangpei and WU Chen. Advance and future development of change detection for multi-temporal remote sensing imagery[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1447–1459. doi: 10.11947/j.AGCS.2017.20170340.
|
[32] |
眭海刚, 冯文卿, 李文卓, 等. 多时相遥感影像变化检测方法综述[J]. 武汉大学学报: 信息科学版, 2018, 43(12): 1885–1898. doi: 10.13203/j.whugis20180251.
SUI Haigang, FENG Wenqing, LI Wenzhuo, et al. Review of change detection methods for multi-temporal remote sensing imagery[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1885–1898. doi: 10.13203/j.whugis20180251.
|
[33] |
佟国峰, 李勇, 丁伟利, 等. 遥感影像变化检测算法综述[J]. 中国图象图形学报, 2015, 20(12): 1561–1571. doi: 10.11834/jig.20151201.
TONG Guofeng, LI Yong, DING Weili, et al. Review of remote sensing image change detection[J]. Journal of Image and Graphics, 2015, 20(12): 1561–1571. doi: 10.11834/jig.20151201.
|
[34] |
JI Shunping, SHEN Yanyun, LU Meng, et al. Building instance change detection from large-scale aerial images using convolutional neural networks and simulated samples[J]. Remote Sensing, 2019, 11(11): 1343. doi: 10.3390/rs11111343.
|
[35] |
NEMOTO K, HAMAGUCHI R, SATO M, et al. Building change detection via a combination of CNNs using only RGB aerial imageries[C]. Proceedings of SPIE 10431, Remote Sensing Technologies and Applications in Urban Environments II, Warsaw, Poland, 2017: 104310J. doi: 10.1117/12.2277912.
|
[36] |
LIU Ruoyun, KUFFER M, and PERSELLO C. The temporal dynamics of slums employing a CNN-based change detection approach[J]. Remote Sensing, 2019, 11(23): 2844. doi: 10.3390/rs11232844.
|
[37] |
LIU Yi, PANG Chao, ZHAN Zongqian, et al. Building change detection for remote sensing images using a dual-task constrained deep Siamese convolutional network model[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(5): 811–815. doi: 10.1109/LGRS.2020.2988032.
|
[38] |
CHEN Hao and SHI Zhenwei. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection[J]. Remote Sensing, 2020, 12(10): 1662. doi: 10.3390/rs12101662.
|
[39] |
JIANG Huiwei, HU Xiangyun, LI Kun, et al. PGA-SiamNet: Pyramid feature-based attention-guided Siamese network for remote sensing orthoimagery building change detection[J]. Remote Sensing, 2020, 12(3): 484. doi: 10.3390/rs12030484.
|
[40] |
ZHAN Yang, FU Kun, YAN Menglong, et al. Change detection based on deep Siamese convolutional network for optical aerial images[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10): 1845–1849. doi: 10.1109/LGRS.2017.2738149.
|
[41] |
SUN Chen, SHRIVASTAVA A, SINGH S, et al. Revisiting unreasonable effectiveness of data in deep learning era[C]. Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 843–852. doi: 10.1109/ICCV.2017.97.
|
[42] |
ALBAHLI S and ALBATTAH W. Deep transfer learning for COVID-19 prediction: Case study for limited data problems[J]. Current Medical Imaging, 2021, 17(8): 973–980. doi: 10.2174/1573405616666201123120417.
|
[43] |
HAO Hanxiang, BAIREDDY S, BARTUSIAK E R, et al. An attention-based system for damage assessment using satellite imagery[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 2021: 4396–4399. doi: 10.1109/IGARSS47720.2021.9554054.
|
[44] |
SEO M, LEE H, JEON Y, et al. Self-pair: Synthesizing changes from single source for object change detection in remote sensing imagery[C]. Proceedings of the 2023 IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, USA, 2023: 6363–6372. doi: 10.1109/WACV56688.2023.00631.
|
[45] |
CHEN Hao, LI Wenyuan, and SHI Zhenwei. Adversarial instance augmentation for building change detection in remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5603216. doi: 10.1109/TGRS.2021.3066802.
|
[46] |
KUMDAKCI H, ÖNGÜN C, and TEMIZEL A. Generative data augmentation for vehicle detection in aerial images[C]. Pattern Recognition. ICPR International Workshops and Challenges, 2021: 19–31. doi: 10.1007/978-3-030-68793-9_2. (查阅网上资料,未找到本条文献出版地信息,请确认) .
|
[47] |
ZHU Junyan, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]. Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2242–2251. doi: 10.1109/ICCV.2017.244.
|
[48] |
JIANG Yuchen, ZHU Bin, and XIE Bo. Remote sensing images data augmentation based on style transfer under the condition of few samples[J]. Journal of Physics: Conference Series, 2020, 1653(1): 012039. doi: 10.1088/1742-6596/1653/1/012039.
|
[49] |
ZHAO Yihao, WU Ruihai, and DONG Hao. Unpaired image-to-image translation using adversarial consistency loss[C]. 16th European Conference on Computer Vision, Glasgow, UK, 2020: 800–815. doi: 10.1007/978-3-030-58545-7_46.
|
[50] |
ISOLA P, ZHU Junyan, ZHOU Tinghui, et al. Image-to-image translation with conditional adversarial networks[C]. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 5967–5976. doi: 10.1109/CVPR.2017.632.
|
[51] |
DAUDT R C, LE SAUX B, and BOULCH A. Fully convolutional Siamese networks for change detection[C]. 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 2018: 4063–4067. doi: 10.1109/ICIP.2018.8451652.
|
[52] |
FANG Sheng, LI Kaiyu, SHAO Jinyuan, et al. SNUNet-CD: A densely connected Siamese network for change detection of VHR images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 8007805. doi: 10.1109/LGRS.2021.3056416.
|