Citation: | YANG Peng, KANG Yiming, YANG Jing, TANG Tong, ZHU Zhiyuan, WU Dapeng. Power Control and Resource Allocation Strategy for Information Freshness Guarantee in Internet of Vehicles[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240698 |
[1] |
MLIKA Z and CHERKAOUI S. Deep deterministic policy gradient to minimize the age of information in cellular V2X communications[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 23597–23612. doi: 10.1109/TITS.2022.3190799.
|
[2] |
CLANCY J, MULLINS D, DEEGAN B, et al. Wireless access for V2X communications: Research, challenges and opportunities[J]. IEEE Communications Surveys & Tutorials, 2024, 26(3): 2082–2119. doi: 10.1109/COMST.2024.3384132.
|
[3] |
Juniper Research. Connected vehicles: Operator opportunities, competitor leaderboard & market forecasts[EB/OL]. https://www.juniperresearch.com/research/telco-connectivity/operator-strategies/connected-vehicles-research-report, 2023.
|
[4] |
FU Qiang, LIU Jiajia, and WANG Jiadai. A flexible resource allocation scheme for NR V2X based vulnerable road user protection[J]. IEEE Transactions on Vehicular Technology, 2024, 73(5): 6672–6686. doi: 10.1109/TVT.2023.3340655.
|
[5] |
GUO Chongtao, LIANG Le, and LI G Y. Resource allocation for low-latency vehicular communications: An effective capacity perspective[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(4): 905–917. doi: 10.1109/JSAC.2019.2898743.
|
[6] |
许耀华, 王慧平, 王贵竹, 等. 基于图着色和三维匹配的车联网资源分配算法[J]. 系统工程与电子技术, 2023, 45(3): 869–875. doi: 10.12305/j.issn.1001-506X.2023.03.29.
XU Yaohua, WANG Huiping, WANG Guizhu, et al. Resource allocation algorithm for internet of vehicles based on graph coloring and three-dimensional matching[J]. Systems Engineering and Electronics, 2023, 45(3): 869–875. doi: 10.12305/j.issn.1001-506X.2023.03.29.
|
[7] |
韩珍珍, 周末, 刘恩慧, 等. 基于用户个性化服务质量的蜂窝车联网与车载自组织网异构车联网资源分配方法[J]. 电子与信息学报, 2021, 43(5): 1339–1348. doi: 10.11999/JEIT200429.
HAN Zhenzhen, ZHOU Mo, LIU Enhui, et al. A personalized QoS-based resource allocation for cellular-vehicle to everything network and vehicle ad-hoc network heterogeneous vehicular network[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1339–1348. doi: 10.11999/JEIT200429.
|
[8] |
中国信息通信研究院. 车联网白皮书(2022年)[R]. 北京: 中国信息通信研究院, 2023.
|
[9] |
林志坚, 侯映, 曹晓晓, 等. 车联网中基于信息年龄价值的边缘缓存策略[J]. 电子学报, 2023, 51(12): 3410–3421. doi: 10.12263/DZXB.20221409.
LIN Zhijian, HOU Ying, CAO Xiaoxiao, et al. Edge caching scheme based on value of information age in the internet of vehicles[J]. Acta Electronica Sinica, 2023, 51(12): 3410–3421. doi: 10.12263/DZXB.20221409.
|
[10] |
YU Baoquan, CAI Yueming, WU Dan, et al. Average age of information in short packet based machine type communication[J]. IEEE Transactions on Vehicular Technology, 2020, 69(9): 10306–10319. doi: 10.1109/TVT.2020.3004828.
|
[11] |
KADOTA I and MODIANO E. Minimizing the age of information in wireless networks with stochastic arrivals[J]. IEEE Transactions on Mobile Computing, 2021, 20(3): 1173–1185. doi: 10.1109/TMC.2019.2959774.
|
[12] |
KIM M, KIM J, KIM T, et al. Age of information based beacon transmission for reducing status update delay in platooning[J]. IEEE Transactions on Vehicular Technology, 2022, 71(10): 11306–11310. doi: 10.1109/TVT.2022.3185979.
|
[13] |
QIN Xiaoqi, XIA Yangyang, LI Hang, et al. Distributed data collection in age-aware vehicular participatory sensing networks[J]. IEEE Internet of Things Journal, 2021, 8(19): 14501–14513. doi: 10.1109/JIOT.2021.3049999.
|
[14] |
PENG Nuoheng, LIN Yan, ZHANG Yijin, et al. AoI-aware joint spectrum and power allocation for internet of vehicles: A trust region policy optimization-based approach[J]. IEEE Internet of Things Journal, 2022, 9(20): 19916–19927. doi: 10.1109/JIOT.2022.3172472.
|
[15] |
WANG Jian, CAO Tengfei, WANG Xiaoying, et al. Resource scheduling in vehicular networks with age of information and channel awareness[C]. 2022 IEEE/CIC International Conference on Communications in China (ICCC), Foshan, China, 2022: 344–349. doi: 10.1109/ICCC55456.2022.9880785.
|
[16] |
HAAN L and FERREIRA A. Extreme Value Theory: An Introduction[M]. New York: Springer, 2006. doi: 10.1007/0-387-34471-3.
|
[17] |
CHAMPATI J, AL-ZUBAIDY H, and GROSS J. Statistical guarantee optimization for age of information for the D/G/1 queue[C]. IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Honolulu, HI, USA, 2018: 130–135. doi: 10.1109/INFCOMW.2018.8406909.
|
[18] |
ABDEL-AZIZ M K, LIU Chenfeng, SAMARAKOON S, et al. Ultra-reliable low-latency vehicular networks: Taming the age of information tail[C]. 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 2018: 1–7. doi: 10.1109/GLOCOM.2018.8647466.
|
[19] |
NEELY M J. Stochastic Network Optimization with Application to Communication and Queueing Systems[M]. Cham: Springer, 2010: 1–211. doi: 10.1007/978-3-031-79995-2.
|
[20] |
程前. 基于NOMA的车联网V2X功率控制研究[D]. [硕士论文], 北方工业大学, 2021. doi: 10.26926/d.cnki.gbfgu.2021.000491.
CHENG Qian. Research on V2X power control of vehicle networking based on NOMA[D]. [Master dissertation], North China University of Technology, 2021. doi: 10.26926/d.cnki.gbfgu.2021.000491.
|
[21] |
3GPP. 3GPP TR 36.885 Study on LTE-based V2X services[S]. Sophia Antipolis: 3GPP Organizational Partners, 2016.
|
[22] |
SUN Wanlu, YUAN Di, STRÖM E G, et al. Cluster-based radio resource management for D2D-supported safety-critical V2X communications[J]. IEEE Transactions on Wireless Communications, 2016, 15(4): 2756–2769. doi: 10.1109/TWC.2015.2509978.
|
[23] |
LIANG Le, XIE Shijie, LI G Y, et al. Graph-based resource sharing in vehicular communication[J]. IEEE Transactions on Wireless Communications, 2018, 17(7): 4579–4592. doi: 10.1109/TWC.2018.2827958.
|
[24] |
LIU Chenfeng and BENNIS M. Ultra-reliable and low-latency vehicular transmission: An extreme value theory approach[J]. IEEE Communications Letters, 2018, 22(6): 1292–1295. doi: 10.1109/LCOMM.2018.2828407.
|