Citation: | MIAO Xiaqing, WU Rui, YUE Pingyue, ZHANG Rui, WANG Shuai, PAN Gaofeng. Cross-Entropy Iteration Aided Time-Hopping Pattern Estimation and Multi-hop Coherent Combining Algorithm[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240677 |
[1] |
ZHOU Di, SHENG Min, LI Jiandong, et al. Aerospace integrated networks innovation for empowering 6G: A survey and future challenges[J]. IEEE Communications Surveys & Tutorials, 2023, 25(2): 975–1019. doi: 10.1109/COMST.2023.3245614.
|
[2] |
GERACI G, LÓPEZ-PÉREZ D, BENZAGHTA M, et al. Integrating terrestrial and non-terrestrial networks: 3D opportunities and challenges[J]. IEEE Communications Magazine, 2023, 61(4): 42–48. doi: 10.1109/MCOM.002.2200366.
|
[3] |
QUY V K, CHEHRI A, QUY N M, et al. Innovative trends in the 6G Era: A comprehensive survey of architecture, applications, technologies, and challenges[J]. IEEE Access, 2023, 11: 39824–39844. doi: 10.1109/ACCESS.2023.3269297.
|
[4] |
SCHOLTZ R. Multiple access with time-hopping impulse modulation[C]. Proceedings of IEEE Military Communications Conference, Boston, USA, 1993: 447–450. doi: 10.1109/MILCOM.1993.408628.
|
[5] |
WELBORN M L. System considerations for ultra-wideband wireless networks[C]. Proceedings of 2001 IEEE Radio and Wireless Conference, Waltham, USA, 2001: 5–8. doi: 10.1109/RAWCON.2001.947480.
|
[6] |
ALI T, SIDDIQUA P, and MATIN M A. Performance evaluation of different modulation schemes for ultra wide band systems[J]. Journal of Electrical Engineering, 2014, 65(3): 184–188. doi: 10.2478/jee-2014-0029.
|
[7] |
YANG Liuqing and GIANNAKIS G B. Timing ultra-wideband signals with dirty templates[J]. IEEE Transactions on Communications, 2005, 53(11): 1952–1963. doi: 10.1109/TCOMM.2005.858663.
|
[8] |
WU Tao, JI Zhiyong, and ZHAO Yubin. An adaptive UWB synchronization algorithm based on the IEEE 802.15. 4–2020 protocol[C]. Proceedings of 2023 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics), Danzhou, China, 2023: 647–653. doi: 10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics60724.2023.00117.
|
[9] |
NAVARRO M and NAJAR M. Frequency domain joint TOA and DOA estimation in IR-UWB[J]. IEEE Transactions on Wireless Communications, 2011, 10(10): 1–11. doi: 10.1109/TWC.2011.072511.090933.
|
[10] |
DIACONESCU F. Blind detection of impulse radio UWB time-hopping pulses using the phase space transformation[C]. Proceedings of the 2019 11th International Conference on Electronics, Computers and Artificial Intelligence, Pitesti, Romania, 2019: 1–4. doi: 10.1109/ECAI46879.2019.9042136.
|
[11] |
DIACONESCU F. Impulse radio UWB blind detection using cross recurrence plot[C]. Proceedings of the 2020 13th International Conference on Communications, Bucharest, Romania, 2020: 397–400. doi: 10.1109/COMM48946.2020.9141986.
|
[12] |
BORIO D and ODRISCOLL C. Design of a general pseudolite pulsing scheme[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1): 2–16. doi: 10.1109/TAES.2013.110277.
|
[13] |
LIU Tong, LIU Jian, WANG Jing, et al. Pseudolites to support location services in smart cities: Review and prospects[J]. Smart Cities, 2023, 6(4): 2081–2105. doi: 10.3390/smartcities6040096.
|
[14] |
CHEONG J W. Signal processing and collective detection for locata positioning system[D]. [Ph. D. dissertation], University of New South Wales, 2012.
|
[15] |
HU Yi, YU Baoguo, SONG Maozhong, et al. Pulse position detection of the pseudo random time-hopping pseudolite for the participative GNSS receivers[J]. IEEE Access, 2020, 8: 216151–216161. doi: 10.1109/ACCESS.2020.3040960.
|
[16] |
LIU Xu, YAO Zheng, and LU Mingquan. Robust time-hopping pseudolite signal acquisition method based on dynamic Bayesian network[J]. GPS Solutions, 2021, 25(2): 38. doi: 10.1007/s10291-020-01066-y.
|