Citation: | TANG Xinmin, ZHOU Yang, LU Qixing, GUAN Xiangmin. Wide-Area Multilateration Time Synchronization Method Based on Signal Arrival Time Modeling[J]. Journal of Electronics & Information Technology, 2025, 47(5): 1434-1449. doi: 10.11999/JEIT240670 |
[1] |
Santos D. Falcão D, Pinto A, et al. Effect of membrane electrode assembly characteristics on the performance of a proton exchange membrane fuel cell stack designed for unmanned aerial vehicle applications[J]. International Journal of Green Energy, 2024, 21(6): 1226–1237. doi: 10.1080/15435075.2023.2244062.
|
[2] |
H. Miyazaki, T. Koga, E. Ueda, Y. Kakubari and S. Nihei, Development of high performance WAM system[C]. 2011 Tyrrhenian International Workshop on Digital Communications - Enhanced Surveillance of Aircraft and Vehicles, Capri, Italy, 2011, pp. 237–240.
|
[3] |
M. Monteiro et al., Detecting malicious ADS-B broadcasts using wide area multilateration[J]. 2015 IEEE/AIAA 34th Digital Avionics Systems Conference (DASC), Prague, Czech Republic, 2015, pp. 4A3-1–4A3-12. doi: 10.1109/DASC.2015.7311413.
|
[4] |
H. Khudov, A. Fedorov, D. Holovniak and G. Misiyuk, Improving the Efficiency of Radar Control of Airspace with the Multilateration System Use[C]. 2018 International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T), Kharkiv, Ukraine, 2018, pp. 680-684. doi: 10.1109/INFOCOMMST.2018.8632141.
|
[5] |
Jheng S L, Jan S S, Chen Y H, et al. 1090 MHz ADS-B-based wide area multilateration system for alternative positioning navigation and timing[J]. IEEE sensors journal, 2020, 20(16): 9490–9501. doi: 10.1109/JSEN.2020.2988514.
|
[6] |
E. Widdison and D. G. Long, A Review of Linear Multilateration Techniques and Applications[J]. IEEE Access, vol. 12, pp. 26251–26266, 2024, DOI: 10.1109/ACCESS.2024.3361835.
|
[7] |
Neven W, Quilter T J, Weedon R, et al. Wide area multilateration report on EATMP TRS 131/04[M]. Brussels: European Organization for the Safety of Air Navigation, 2004.
|
[8] |
Jiang Chaoshu, Liu Changzhong and Wang Xuegang, GPS synchronized wide area multilateration system[C]. 2009 International Conference on Communications, Circuits and Systems, Milpitas, CA, USA, 2009, pp. 457–459, DOI: 10.1109/ICCCAS.2009.5250465.
|
[9] |
Leonardi, M., Bellipanni, L., Galati, G. (2010). All satellites in view: GNSS-based synchronization for wide area multilateration[C]. The European Navigation Conference Global Navigation Satellite Systems ENC GNSS 2010. Deutsche Gesellschaft für Ortung und Navigation e. V. (DGON).
|
[10] |
R. Seller and Á. Szüllő, Wide area multilateration demonstration system[C]. ICECom 2013, Dubrovnik, Croatia, 2013, pp. 1–5. doi: 10.1109/ICECom.2013.6684741.
|
[11] |
M. Pelant and V. Stejskal, Multilateration system time synchronization via over-determination of TDOA measurements[C]. 2011 Tyrrhenian International Workshop on Digital Communications - Enhanced Surveillance of Aircraft and Vehicles, Capri, Italy, 2011, pp. 179–183.
|
[12] |
D. Eier and M. Sharples, Method for GPS and GNSS Independent MLAT System Synchronization[C]. 2019 Integrated Communications, Navigation and Surveillance Conference (ICNS), Herndon, VA, USA, 2019, pp. 1–6. doi: 10.1109/ICNSURV.2019.8735228.
|
[13] |
马永圣, 张敏, 郭福成. 基于ADS-B的多站时间同步系统的偏差联合估计方法[J]. 系统工程与电子技术, 2018, 40(04): 726–732. doi: 10.3969/j.issn.1001-506X.2018.04.02.
MA Yongsheng, ZHANG Min, GuoFucheng. Joint bias estimation method for multi-station time synchronization system based on ADS-B[J]. Systems Engineering and Electronics, 2018, 40(04): 726–732. doi: 10.3969/j.issn.1001-506X.2018.04.02.
|
[14] |
Xu H, Wang G, Guo L, et al. Implementation of field programmable Gate array-based clock synchronization in the fiber channel communication system[J]. The Review of scientific instruments, 2024, 95(3).
|
[15] |
吴文臻. 基于改进时间同步的矿井UWB优化定位方法[J]. 工矿自动化, 2024, 50(S1): 34–38.
WU Wenzhen. Research on mine UWB optimized positioning method based on improved time synchronization[J]. Journal of Mine Automation, 2024, 50(S1): 34–38.
|
[16] |
胡爱华, 邓中亮, 张耀. 基于改进TPSN和卡尔曼滤波的时间同步算法[J]. 现代电子技术, 2018, 41(13): 5–9. doi: 10.16652/j.issn.1004-373x.2018.13.002.
HU Aihua1, DENG Zhongliang, ZHANG Yao. Time synchronization algorithm based on improved TPSN and Kalman filtering[J]. Modern Electronics Technique, 2018, 41(13): 5–9. doi: 10.16652/j.issn.1004-373x.2018.13.002.
|
[17] |
王义君, 钱志鸿. 自适应高效无线传感器网络时间同步优化算法[J]. 电子与信息学报, 2022, 44(08): 2802–2813. doi: 10.11999/JEIT210533.
WANG Yijun, QIANZhihong. Adaptive and Efficient Time Synchronization Optimization Algorithm in Wireless Sensor Networks[J]. Journal of Electronics & Information Technology, 2022, 44(08): 2802–2813. doi: 10.11999/JEIT210533.
|
[18] |
周华勇, 陈珍萍. 基于群智慧对选择算法的分布式一致性时间同步方法[J]. 传感技术学报, 2023, 36(08): 1296–1302. doi: 10.3969/j.issn.1004-1699.2023.08.017.
ZHOU Huayong, CHEN Zhenping. Distributed Consensus Time Synchronization Method Based on Group-Wise Pair Selection Algorithm[J]. CHINESE JOURNAL OF SENSORS AND ACTUATORS, 2023, 36(08): 1296–1302. doi: 10.3969/j.issn.1004-1699.2023.08.017.
|
[19] |
Jacek Stefanski, Asynchronous wide area multilateration system[J]. Aerospace Science and Technology, Volume 36, 2014, Pages 94-102, ISSN 1270-9638, https://doi.org/10.1016/j.ast.2014.03.016.
|
[20] |
Stefanski, J. , Sadowski, J. TDOA versus ATDOA for wide area multilateration system[J]. Wireless Com Network, 2018, 179 (2018). https://doi.org/10.1186/s13638-018-1191-5.
|
[21] |
Sadowski J, Stefanski J. Asynchronous WAM with Irregular Pulse Repetition[J]. Journal of Navigation, 2019;72(1): 85-100. doi: 10.1017/S0373463318000607.
|
[22] |
Vyskocil P, Sebesta J. Relative timing characteristics of GPS timing modules for time synchronization application[C]. 2009 International Workshop on Satellite and Space Communications. https://doi.org/10.1109/iwssc.2009.5286378.
|
[23] |
吴红卫, 李铎, 顾思洪. 小波滤波在时间同步系统中应用研究[J]. 仪器仪表学报, 2019, 40(02): 182–189. doi: 10.19650/j.cnki.cjsi.J1804233.
Wu Hongwei, Li Duo, Gu Sihong. Application research of wavelet filtering in time synchronization system[J]. Chinese Journal of Scientific Instrument, 2019, 40(02): 182–189. doi: 10.19650/j.cnki.cjsi.J1804233.
|
[24] |
Xiong H, Chen Z, Yang B, et al. TDOA localization algorithm with compensation of clock offset for wireless sensor networks[J]. China Communications, 2015. DOI: 10.1109.
|
[25] |
丁勇, 王慧聪, 高伟, 等. 基于北斗导航的时钟驯服导航接收机设 计[C]. 第十四届中国卫星导航年会论文集; 2024: 6. DOI: 10.26914/c.cnkihy.2024.000088.
Yong Ding, Huicong Wang, Wei Gao, et al. Design of Disciplined Clock Navigation Receiver based on Beidou Navigation[C]. Proceedings of the 14th Annual China Satellite Navigation Conference; 2024: 6. DOI:10.26914 /c.cnkihy. 2024.000088.
|
[26] |
张国琴, 吴玉蓉. 基于GPS校准晶振的高精度时钟的设计[J]. 仪表技术, 2010(04): 23–24+27. doi: 10.19432/j.cnki.issn1006-2394.2010.04.008.
Zhang Guoqin, Wu Yurong. Design of High Precision Clock Based on the GPS Disciplined Oscillator[J]. Instrumentation Technology, 2010(04): 23–24+27. doi: 10.19432/j.cnki.issn1006-2394.2010.04.008.
|
[27] |
WILLNER A N, LIAO P, ZOU K, et al. Scalable and reconfigurable optical tapped-delay-line for multichannel equalization and correlation using nonlinear wave mixing and a Kerr frequency comb[J]. Optics Letters, 2018, 43(22): 5563–5566. doi: 10.1364/OL.43.005563.
|
[28] |
刘典, 汤新民. 基于分布式授时的多点定位接收机设计[J]. 测控技术, 2023, 42(08): 76–82. doi: 10.19708/j.ckjs.2023.08.012.
LIU Dian, TANG Xinmin. Design of Multi-Point Position Receiver Based on Distributed Timing[J]. Measurement & Control Technology, 2023, 42(08): 76–82. doi: 10.19708/j.ckjs.2023.08.012.
|
[29] |
宫峰勋, 第五瑶光. 低信噪比S模式信号到达时间估计联合算法[J/OL]. 北京航空航天大学学报, 1–13. [2024-05-23]. https://doi.org/10.13700/j.bh.1001-5965.2023.0027.
Gong Fengxun, DIWU Yaoguang. Time of arrival estimation of S-mode signals under low SNR by joint algorithm[J/OL]. Journal of Beijing University of Aeronautics and Astronautics, 1–13[2024-05-23]. https://doi.org/10.13700/j.bh.1001-5965.2023.0027.
|
[30] |
陈甲. 工业控制中PID的参数整定方法[J]. 自动化应用, 2023, 64(23): 50–52.
CHEN Jia. Parameter Tuning Method for PID in Industrial Control[J]. Application of Automation, 2023, 64(23): 50–52.
|
[31] |
任宣铭, 汤新民, 刘雨生, 等. 基于INT-VSMM算法的目标航迹跟踪和外推[J/OL]. 北京航空航天大学学报, 1–17. [2024-04-22]. https://doi.org/10.13700/j.bh.1001-5965.2023.0724.
REN Xuanming, TANG Xinmin, LIU Yusheng, et al. Target trajectory tracking and extrapolation based on the INT-VSMM algorithm[J/OL]. Journal of Beijing University of Aeronautics and Astronautics, 1–17 [2024-04-22]. https://doi.org/10.13700/j. bh.1001-5965.2023.0724.
|
[32] |
Jianhua Zhang, Feng Gao, Yang Li, et al. Simulation of multilateration system based on Chan algorithm and conjugate gradient optimization algorithm[J]. International Journal of Simulation and Process Modelling, 2019, 14(5).
|
[33] |
R. Zhou, H. Sun, H. Li and W. Luo, Time-difference-of-arrival Location Method of UAV Swarms Based on Chan-Taylor[C]. 2020 3rd International Conference on Unmanned Systems (ICUS), Harbin, China, 2020, pp. 1161-1166, doi: 10.1109/ICUS50048.2020.9274877.
|
[34] |
陈思涵. 基于Fang算法的TDOA室内定位技术[J]. 太赫兹科学与电子信息学报, 2017, 15(5): 752. doi: 10.11805/TKYDA201705.0752.
CHEN Sihan. TDOA indoor location technology based on Fang algorithm[J]. Journal of terahertz science and electronic information technology, 2017, 15(5): 752. doi: 10.11805/TKYDA201705.0752.
|
[35] |
邱志豪. 场面和广域多点定位系统技术要求的差异性阐述[J]. 科教导刊(下旬), 2017(21): 35–36. DOI:10.16400 / j. cnki. Kjd kx.2017.07.017. doi: 10.16400/j.cnki.Kjdkx.2017.07.017.
QIU ZhiHao. Explaining the Differences of Technical Requirement between MLAT and WAM[J]. Disciplines Exploration, 2017(21): 35–36. DOI:10.16400/j. cnki.kjdkx. 2017. 07.017. doi: 10.16400/j.cnki.Kjdkx.2017.07.017.
|