Citation: | LIU Chang, LI Weishi, XU Qiang, SHI Chengzhe, SHAO Shihai. Accelerated Channel Simulation Algorithm for Large-Scale Battlefield[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240655 |
[1] |
TESTOLINA P, POLESE M, JOHARI P, et al. Boston twin: The Boston digital twin for ray-tracing in 6G networks[C]. The 15th ACM Multimedia Systems Conference, Bari, Italy, 2024: 441–447. doi: 10.1145/3625468.3652190.
|
[2] |
BAUMGÄRTNER L, BAUER M, and BLOESSL B. SUN: A simulated UAV network testbed with hardware-in-the-loop SDR support[C]. 2023 IEEE Wireless Communications and Networking Conference (WCNC), Glasgow, United Kingdom, 2023: 1–6. doi: 10.1109/WCNC55385.2023.10119014.
|
[3] |
VILLA D, TEHRANI-MOAYYED M, ROBINSON C P, et al. Colosseum as a digital twin: Bridging real-world experimentation and wireless network emulation[J]. IEEE Transactions on Mobile Computing, 2024, 23(10): 9150–9166. doi: 10.1109/TMC.2024.3359596.
|
[4] |
RUSCA R, RAVIGLIONE F, CASETTI C, et al. Mobile RF scenario design for massive-scale wireless channel emulators[C]. 2023 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), Gothenburg, Sweden, 2023: 675–680. doi: 10.1109/EuCNC/6GSummit58263.2023.10188319.
|
[5] |
MOHANTI S, BOCANEGRA C, SANCHEZ S G, et al. SABRE: Swarm-based aerial beamforming radios: Experimentation and emulation[J]. IEEE Transactions on Wireless Communications, 2022, 21(9): 7460–7475. doi: 10.1109/TWC.2022.3158866.
|
[6] |
MUKHERJEE M, RAHMAN N M, DELUDE C, et al. A high performance computing architecture for real-time digital emulation of RF interactions[C]. 2023 IEEE Radar Conference (RadarConf23), San Antonio, USA, 2023: 1–6. doi: 10.1109/RadarConf2351548.2023.10149577.
|
[7] |
ERUNKULU O O, ZUNGERU A M, LEBEKWE C K, et al. Cellular communications coverage prediction techniques: A survey and comparison[J]. IEEE Access, 2020, 8: 113052–113077. doi: 10.1109/ACCESS.2020.3003247.
|
[8] |
KLOCH C, LIANG G, ANDERSEN J B, et al. Comparison of measured and predicted time dispersion and direction of arrival for multipath in a small cell environment[J]. IEEE Transactions on Antennas and Propagation, 2001, 49(9): 1254–1263. doi: 10.1109/8.947016.
|
[9] |
MONTIEL E, AGUADO A S, and SILLION F X. A radiance model for predicting radio wave propagation in irregular dense urban areas[J]. IEEE Transactions on Antennas and Propagation, 2003, 51(11): 3097–3108. doi: 10.1109/TAP.2003.818781.
|
[10] |
DU Kai, HUANG Huaguo, ZHU Yuyi, et al. Simulation of Ku-band profile radar waveform by extending radiosity applicable to porous individual objects (RAPID2) model[J]. Remote Sensing, 2020, 12(4): 684. doi: 10.3390/rs12040684.
|
[11] |
ALQUDAH Y A and KAVEHRAD M. MIMO characterization of indoor wireless optical link using a diffuse-transmission configuration[J]. IEEE Transactions on Communications, 2003, 51(9): 1554–1560. doi: 10.1109/TCOMM.2003.816945.
|
[12] |
FARAHNEH H, KHALIFEH A, and FERNANDO X. An outdoor multi path channel model for vehicular visible light communication systems[C]. 2016 Photonics North (PN), Quebec City, Canada, 2016: 675–680. doi: 10.1109/PN.2016.7537911.
|
[13] |
AYADI M, TORJEMEN N, and TABBANE S. Two-dimensional deterministic propagation models approach and comparison with calibrated empirical models[J]. IEEE Transactions on Wireless Communications, 2015, 14(10): 5714–5722. doi: 10.1109/TWC.2015.2442572.
|
[14] |
SCHULZE H. Frequency-domain simulation of the indoor wireless optical communication channel[J]. IEEE Transactions on Communications, 2016, 64(6): 2551–2562. doi: 10.1109/TCOMM.2016.2556684.
|
[15] |
SCHULZE H, MIETZNER J, and HOEHER P A. Dispersive optical wireless indoor channels–from frequency-domain modeling to bit-error-rate prediction[J]. IEEE Photonics Journal, 2024, 16(1): 7300713. doi: 10.1109/JPHOT.2024.3357169.
|
[16] |
LIU Weirong, FEI Dan, GUAN Ke, et al. Channel measurements and modeling of wooded hilly terrain at sub-1 GHz band[J]. IEEE Antennas and Wireless Propagation Letters, 2024, 23(4): 1301–1305. doi: 10.1109/LAWP.2024.3353736.
|