Citation: | WU Zhangjun, XU Renli, FANG Gang, SHAO Haidong. A Modal Fusion Deep Clustering Method for Multi-Sensor Fault Diagnosis of Rotating Machinery[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240648 |
[1] |
王玉静, 康守强, 张云, 等. 基于集合经验模态分解敏感固有模态函数选择算法的滚动轴承状态识别方法[J]. 电子与信息学报, 2014, 36(3): 595–600. doi: 10.3724/SP.J.1146.2013.00434.
WANG Yujing, KANG Shouqiang, ZHANG Yun, et al. Condition recognition method of rolling bearing based on ensemble empirical mode decomposition sensitive intrinsic mode function selection algorithm[J]. Journal of Electronics & Information Technology, 2014, 36(3): 595–600. doi: 10.3724/SP.J.1146.2013.00434.
|
[2] |
文成林, 吕菲亚. 基于深度学习的故障诊断方法综述[J]. 电子与信息学报, 2020, 42(1): 234–248. doi: 10.11999/JEIT190715.
WEN Chenglin and LÜ Feiya. Review on deep learning based fault diagnosis[J]. Journal of Electronics & Information Technology, 2020, 42(1): 234–248. doi: 10.11999/JEIT190715.
|
[3] |
邵海东, 肖一鸣, 邓乾旺, 等. 基于不确定性感知网络的可信机械故障诊断[J]. 机械工程学报, 2024, 60(12): 194–206. doi: 10.3901/JME.2024.12.194.
SHAO Haidong, XIAO Yiming, DENG Qianwang, et al. Trustworthy mechanical fault diagnosis using uncertainty-aware network[J]. Journal of Mechanical Engineering, 2024, 60(12): 194–206. doi: 10.3901/JME.2024.12.194.
|
[4] |
康守强, 杨佳轩, 王玉静, 等. 基于改进宽度模型迁移学习的不同负载下滚动轴承状态快速分类方法[J]. 电子与信息学报, 2023, 45(5): 1824–1832. doi: 10.11999/JEIT220401.
KANG Shouqiang, YANG Jiaxuan, WANG Yujing, et al. A fast classification method of rolling bearing state under different loads based on improved broad model transfer learning[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1824–1832. doi: 10.11999/JEIT220401.
|
[5] |
邵海东, 颜深, 肖一鸣, 等. 时变转速下基于改进图注意力网络的轴承半监督故障诊断[J]. 电子与信息学报, 2023, 45(5): 1550–1558. doi: 10.11999/JEIT220303.
SHAO Haidong, YAN Shen, XIAO Yiming, et al. Semi-supervised bearing fault diagnosis using improved graph attention network under time-varying speeds[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1550–1558. doi: 10.11999/JEIT220303.
|
[6] |
孙瑾铃, 张伟涛, 楼顺天. 基于等变化自适应源分离算法的滚动轴承故障信号自适应盲提取[J]. 电子与信息学报, 2020, 42(10): 2471–2477. doi: 10.11999/JEJT190722.
SUN Jinling, ZHANG Weitao, and LOU Shuntian. Adaptive blind extraction of rolling bearing fault signal based on equivariant adaptive separation via independence[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2471–2477. doi: 10.11999/JEJT190722.
|
[7] |
邵海东, 林健, 闵志闪, 等. 分布外样本干扰下基于改进半监督原型网络的齿轮箱跨域故障诊断[J]. 机械工程学报, 2024, 60(4): 212–221. doi: 10.3901/JME.2024.04.212.
SHAO Haidong, LIN Jian, MIN Zhishan, et al. Improved semi-supervised prototype network for cross-domain fault diagnosis of gearbox under out-of-distribution interference samples[J]. Journal of Mechanical Engineering, 2024, 60(4): 212–221. doi: 10.3901/JME.2024.04.212.
|
[8] |
XIAO Yiming, SHAO Haidong, HAN Songyu, et al. Novel joint transfer network for unsupervised bearing fault diagnosis from simulation domain to experimental domain[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(6): 5254–5263. doi: 10.1109/TMECH.2022.3177174.
|
[9] |
解骞, 徐浩岚, 王彤, 等. 基于自主认知深度时间聚类表示的隔离开关故障诊断方法[J]. 电气工程学报, 2024, 19(1): 281–289. doi: 10.11985/2024.01.030.
XIE Qian, XU Haolan, WANG Tong, et al. Disconnector fault diagnosis method based on autonomous-cognition deep temporal clustering representation[J]. Journal of Electrical Engineering, 2024, 19(1): 281–289. doi: 10.11985/2024.01.030.
|
[10] |
LI Xiang, LI Xu, and MA Hui. Deep representation clustering-based fault diagnosis method with unsupervised data applied to rotating machinery[J]. Mechanical Systems and Signal Processing, 2020, 143: 106825. doi: 10.1016/j.ymssp.2020.106825.
|
[11] |
LIU Yongjie, DING Kun, ZHANG Jingwei, et al. Fault diagnosis approach for photovoltaic array based on the stacked auto-encoder and clustering with I-V curves[J]. Energy Conversion and Management, 2021, 245: 114603. doi: 10.1016/j.enconman.2021.114603.
|
[12] |
YU Jianbo and YAN Xuefeng. Multiscale intelligent fault detection system based on agglomerative hierarchical clustering using stacked denoising autoencoder with temporal information[J]. Applied Soft Computing, 2020, 95: 106525. doi: 10.1016/j.asoc.2020.106525.
|
[13] |
ZHAO Bo, ZHANG Xianmin, WU Qiqiang, et al. A novel unsupervised directed hierarchical graph network with clustering representation for intelligent fault diagnosis of machines[J]. Mechanical Systems and Signal Processing, 2023, 183: 109615. doi: 10.1016/j.ymssp.2022.109615.
|
[14] |
REN Yazhou, PU Jingyu, YANG Zhimeng, et al. Deep clustering: A comprehensive survey[EB/OL]. https://arxiv.org/abs/2210.04142, 2022.
|
[15] |
IKOTUN A M, EZUGWU A E, ABUALIGAH L, et al. K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data[J]. Information Sciences, 2023, 622: 178–210. doi: 10.1016/j.ins.2022.11.139.
|
[16] |
XIE Junyuan, GIRSHICK R, and FARHADI A. Unsupervised deep embedding for clustering analysis[C]. Proceedings of the 33rd International Conference on Machine Learning, New York City, USA, 2016: 478–487.
|
[17] |
GUO Xifeng, GAO Long, LIU Xingwang, et al. Improved deep embedded clustering with local structure preservation[C]. Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, Melbourne, Australia, 2017: 1753–1759. doi: 10.24963/ijcai.2017/243.
|
[18] |
WU Zhangjun, FANG Gang, WANG Yifei, et al. An end-to-end deep clustering method with consistency and complementarity attention mechanism for multisensor fault diagnosis[J]. Applied Soft Computing, 2024, 158: 111594. doi: 10.1016/j.asoc.2024.111594.
|
[19] |
WANG Kejun, WANG Wenqing, ZHAO Yabo, et al. Multisensor fault diagnosis via Markov chain and evidence theory[J]. Engineering Applications of Artificial Intelligence, 2023, 126: 106851. doi: 10.1016/j.engappai.2023.106851.
|
[20] |
MAN Jie, DONG Honghui, JIA Limin, et al. AttGGCN model: A novel multi-sensor fault diagnosis method for high-speed train bogie[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 19511–19522. doi: 10.1109/TITS.2022.3156281.
|
[21] |
TONG Jinyu, LIU Cang, ZHENG Jinde, et al. Multi-sensor information fusion and coordinate attention-based fault diagnosis method and its interpretability research[J]. Engineering Applications of Artificial Intelligence, 2023, 124: 106614. doi: 10.1016/j.engappai.2023.106614.
|
[22] |
CUI Jian, XIE Ping, WANG Xiao, et al. M2FN: An end-to-end multi-task and multi-sensor fusion network for intelligent fault diagnosis[J]. Measurement, 2022, 204: 112085. doi: 10.1016/j.measurement.2022.112085.
|
[23] |
XU Yadong, FENG Ke, YAN Xiaoan, et al. CFCNN: A novel convolutional fusion framework for collaborative fault identification of rotating machinery[J]. Information Fusion, 2023, 95: 1–16. doi: 10.1016/j.inffus.2023.02.012.
|
[24] |
YANG Chaoying, LIU Jie, ZHOU Kaibo, et al. Semisupervised machine fault diagnosis fusing unsupervised graph contrastive learning[J]. IEEE Transactions on Industrial Informatics, 2023, 19(8): 8644–8653. doi: 10.1109/TII.2022.3220847.
|
[25] |
WANG Daichao, LI Yibin, JIA Lei, et al. Novel three-stage feature fusion method of multimodal data for bearing fault diagnosis[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 3514710. doi: 10.1109/TIM.2021.3071232.
|
[26] |
MA Meng, SUN Chuang, and CHEN Xuefeng. Deep coupling autoencoder for fault diagnosis with multimodal sensory data[J]. IEEE Transactions on Industrial Informatics, 2018, 14(3): 1137–1145. doi: 10.1109/TII.2018.2793246.
|
[27] |
CHE Changchang, WANG Huawei, NI Xiaomei, et al. Hybrid multimodal fusion with deep learning for rolling bearing fault diagnosis[J]. Measurement, 2021, 173: 108655. doi: 10.1016/j.measurement.2020.108655.
|
[28] |
HU Zhanxuan, WANG Yichen, NING Hailong, et al. Mutual-taught deep clustering[J]. Knowledge-Based Systems, 2023, 282: 111100. doi: 10.1016/j.knosys.2023.111100.
|