Advanced Search
Turn off MathJax
Article Contents
LU Xianling, LI Dekang. Task Offloading Algorithm for Large-scale Multi-access Edge Computing Scenarios[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240624
Citation: LU Xianling, LI Dekang. Task Offloading Algorithm for Large-scale Multi-access Edge Computing Scenarios[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240624

Task Offloading Algorithm for Large-scale Multi-access Edge Computing Scenarios

doi: 10.11999/JEIT240624
Funds:  The National Natural Science Foundation of China (61773181)
  • Received Date: 2024-07-18
  • Rev Recd Date: 2024-12-03
  • Available Online: 2024-12-09
  • The task offloading algorithm based on single-agent reinforcement learning encounters strategy degradation issues due to the mutual influence between agents when addressing task offloading in large-scale Multi-access Edge Computing (MEC) systems. In contrast, traditional multi-agent algorithms, such as the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) suffer from poor scalability as the dimensions of the joint action space increase proportionally with the number of agents in the system. To address these issues, the large-scale MEC task offloading problem is modeled as a Partially Observable Markov Decision Process (POMDP), and a task offloading algorithm based on mean-field multi-agent reinforcement learning is proposed. The introduction of a Long Short-Term Memory (LSTM) network addresses the partial observability problem, while mean-field approximation theory reduces the dimensionality of the joint action space. Simulation results demonstrate that the proposed algorithm outperforms single-agent task offloading algorithms in terms of task delay and task drop rate. Furthermore, even with reduced dimensions of the joint action space, the algorithm maintains performance in terms of task delay and task drop rate consistent with MADDPG.
  • loading
  • [1]
    KHAN W Z, AHMED E, HAKAK S, et al. Edge computing: A survey[J]. Future Generation Computer Systems, 2019, 97: 219–235. doi: 10.1016/j.future.2019.02.050.
    [2]
    HUA Haochen, LI Yutong, WANG Tonghe, et al. Edge computing with artificial intelligence: A machine learning perspective[J]. ACM Computing Surveys, 2023, 55(9): 184. doi: 10.1145/3555802.
    [3]
    LI Tianxu, ZHU Kun, LUONG N C, et al. Applications of multi-agent reinforcement learning in future internet: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2022, 24(2): 1240–1279. doi: 10.1109/COMST.2022.3160697.
    [4]
    FENG Chuan, HAN Pengchao, ZHANG Xu, et al. Computation offloading in mobile edge computing networks: A survey[J]. Journal of Network and Computer Applications, 2022, 202: 103366. doi: 10.1016/j.jnca.2022.103366.
    [5]
    LUO Quyuan, HU Shihong, LI Changle, et al. Resource scheduling in edge computing: A survey[J]. IEEE Communications Surveys & Tutorials, 2021, 23(4): 2131–2165. doi: 10.1109/COMST.2021.3106401.
    [6]
    CHEN Weiwei, WANG Dong, and LI Keqin. Multi-user multi-task computation offloading in green mobile edge cloud computing[J]. IEEE Transactions on Services Computing, 2019, 12(5): 726–738. doi: 10.1109/TSC.2018.2826544.
    [7]
    PORAMBAGE P, OKWUIBE J, LIYANAGE M, et al. Survey on multi-access edge computing for internet of things realization[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 2961–2991. doi: 10.1109/COMST.2018.2849509.
    [8]
    SAEIK F, AVGERIS M, SPATHARAKIS D, et al. Task offloading in edge and cloud computing: A survey on mathematical, artificial intelligence and control theory solutions[J]. Computer Networks, 2021, 195: 108177. doi: 10.1016/j.comnet.2021.108177.
    [9]
    LI Shancang, XU Lida, and ZHAO Shanshan. 5G internet of things: A survey[J]. Journal of Industrial Information Integration, 2018, 10: 1–9. doi: 10.1016/j.jii.2018.01.005.
    [10]
    夏士超, 姚枝秀, 鲜永菊, 等. 移动边缘计算中分布式异构任务卸载算法[J]. 电子与信息学报, 2020, 42(12): 2891–2898. doi: 10.11999/JEIT190728.

    XIA Shichao, YAO Zhixiu, XIAN Yongju, et al. A distributed heterogeneous task offloading methodology for mobile edge computing[J] Journal of Electronics & Information Technology, 2020, 42(12): 2891–2898. doi: 10.11999/JEIT190728.
    [11]
    RANAWEERA P, JURCUT A D, and LIYANAGE M. Survey on multi-access edge computing security and privacy[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 1078–1124. doi: 10.1109/COMST.2021.3062546.
    [12]
    TRAN T X and POMPILI D. Joint task offloading and resource allocation for multi-server mobile-edge computing networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(1): 856–868. doi: 10.1109/TVT.2018.2881191.
    [13]
    BI Suzhi, HUANG Liang, WANG Hui, et al. Lyapunov-guided deep reinforcement learning for stable online computation offloading in mobile-edge computing networks[J]. IEEE Transactions on Wireless Communications, 2021, 20(11): 7519–7537. doi: 10.1109/TWC.2021.3085319.
    [14]
    CHEN Xianfu, ZHANG Honggang, WU Celimuge, et al. Optimized computation offloading performance in virtual edge computing systems via deep reinforcement learning[J]. IEEE Internet of Things Journal, 2019, 6(3): 4005–4018. doi: 10.1109/JIOT.2018.2876279.
    [15]
    HUANG Liang, BI Suzhi, and ZHANG Y J A. Deep reinforcement learning for online computation offloading in wireless powered mobile-edge computing networks[J]. IEEE Transactions on Mobile Computing, 2020, 19(11): 2581–2593. doi: 10.1109/TMC.2019.2928811.
    [16]
    CAO Zilong, ZHOU Pan, LI Ruixuan, et al. Multiagent deep reinforcement learning for joint multichannel access and task offloading of mobile-edge computing in industry 4.0[J]. IEEE Internet of Things Journal, 2020, 7(7): 6201–6213. doi: 10.1109/JIOT.2020.2968951.
    [17]
    ZHU Xiaoyu, LUO Yueyi, LIU Anfeng, et al. Multiagent deep reinforcement learning for vehicular computation offloading in IoT[J]. IEEE Internet of Things Journal, 2021, 8(12): 9763–9773. doi: 10.1109/JIOT.2020.3040768.
    [18]
    HEYDARI J, GANAPATHY V, and SHAH M. Dynamic task offloading in multi-agent mobile edge computing networks[C]. 2019 IEEE Global Communications Conference, Waikoloa, USA, 2019: 1–6. doi: 10.1109/GLOBECOM38437.2019.9013115.
    [19]
    GAO Zhen, YANG Lei, and DAI Yu. Large-scale computation offloading using a multi-agent reinforcement learning in heterogeneous multi-access edge computing[J]. IEEE Transactions on Mobile Computing, 2023, 22(6): 3425–3443. doi: 10.1109/TMC.2022.3141080.
    [20]
    YANG Yaodong, LUO Rui, LI Minne, et al. Mean field multi-agent reinforcement learning[C]. Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 2018: 5571–5580.
    [21]
    TANG Ming and WONG V W S. Deep reinforcement learning for task offloading in mobile edge computing systems[J]. IEEE Transactions on Mobile Computing, 2022, 21(6): 1985–1997. doi: 10.1109/TMC.2020.3036871.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (83) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return