Advanced Search
Turn off MathJax
Article Contents
SHI Tongzhi, LI Bo, YANG Hongjuan, ZHANG Tong, WANG Gang. Spatial Deployment and Beamforming for Design Multi-Unmanned Aerial Vehicle-Integrated Sensing and Communication Based on Transmission Fairness[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240590
Citation: SHI Tongzhi, LI Bo, YANG Hongjuan, ZHANG Tong, WANG Gang. Spatial Deployment and Beamforming for Design Multi-Unmanned Aerial Vehicle-Integrated Sensing and Communication Based on Transmission Fairness[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240590

Spatial Deployment and Beamforming for Design Multi-Unmanned Aerial Vehicle-Integrated Sensing and Communication Based on Transmission Fairness

doi: 10.11999/JEIT240590
Funds:  The National Natural Science Foundation of China (62171154, 62171163), The Fundamental Research Funds for the Central Universities (HIT.OCEF.2023030)
  • Received Date: 2024-07-11
  • Rev Recd Date: 2024-09-13
  • Available Online: 2024-09-19
  • In response to the temporary and emergent issue of poor communication in rural and remote areas, an adaptive multi-Unmanned Aerial Vehicle (UAV)-assisted Integrated Sensing And Communication (ISAC) mechanism is proposed in this paper. In scenarios where ground users and sensing targets are randomly distributed in clusters, the mechanism achieves comprehensive communication coverage by rationally scheduling multiple UAVs, providing a novel solution and scheme for UAV-enabled ISAC systems. The spatial deployment of UAVs and their beamforming directed towards ground equipment are primarily addressed in this paper. Under the constraints of the air-ground association policy, the system can maximize the lower bound of the users’ transmission reachable rate by optimizing the set of communication and sensing beamforming variables for the UAVs, while ensuring the basic requirements of ISAC. To solve the considered non-convex optimization problems, the Mean Shift (MS) algorithm based on Gaussian kernels to manage the mixed-integer linear issues within the association strategy is first employed. Additionally, combining the quadratic transformation and Successive Convex Approximation (SCA), the optimization of beamforming is conducted via the Block Coordinate Descent (BCD) method, thereby securing a suboptimal solution. Numerical results validate the effectiveness of the adaptive mechanism.
  • loading
  • [1]
    CUI Yanpeng, FENG Zhiyong, ZHANG Qixun, et al. Toward trusted and swift UAV communication: ISAC-enabled dual identity mapping[J]. IEEE Wireless Communications, 2023, 30(1): 58–66. doi: 10.1109/MWC.003.2200207.
    [2]
    MU Junsheng, ZHANG Ronghui, CUI Yuanhao, et al. UAV meets integrated sensing and communication: Challenges and future directions[J]. IEEE Communications Magazine, 2023, 61(5): 62–67. doi: 10.1109/MCOM.008.2200510.
    [3]
    DENG Cailian, FANG Xuming, and WANG Xianbin. Beamforming design and trajectory optimization for UAV-empowered adaptable integrated sensing and communication[J]. IEEE Transactions on Wireless Communications, 2023, 22(11): 8512–8526. doi: 10.1109/TWC.2023.3264523.
    [4]
    MENG Kaitao, WU Qingqing, MA Shaodan, et al. Throughput maximization for UAV-enabled integrated periodic sensing and communication[J]. IEEE Transactions on Wireless Communications, 2023, 22(1): 671–687. doi: 10.1109/TWC.2022.3197623.
    [5]
    SAVKIN A V, NI Wei, and ESKANDARI M. Effective UAV navigation for cellular-assisted radio sensing, imaging, and tracking[J]. IEEE Transactions on Vehicular Technology, 2023, 72(10): 13729–13733. doi: 10.1109/TVT.2023.3277426.
    [6]
    WU Jun, YUAN Weijie, and HANZO L. When UAVs meet ISAC: Real-time trajectory design for secure communications[J]. IEEE Transactions on Vehicular Technology, 2023, 72(12): 16766–16771. doi: 10.1109/TVT.2023.3290033.
    [7]
    WANG Qianli and FAN Pingzhi. A multi-symbol compressive sensing model for OTFS based ISAC system[C]. 2023 IEEE Global Communications Conference, Kuala Lumpur, Malaysia, 2023: 2487–2492. doi: 10.1109/GLOBECOM54140.2023.10437965.
    [8]
    LIU Qian, LIANG Hairong, LUO Rui, et al. Energy-efficiency computation offloading strategy in UAV aided V2X network with integrated sensing and communication[J]. IEEE Open Journal of the Communications Society, 2022, 3: 1337–1346. doi: 10.1109/OJCOMS.2022.3195703.
    [9]
    WU Jun, YUAN Weijie, and BAI Lin. Multi-UAV enabled sensing: Cramér-Rao bound optimization[C]. 2023 IEEE International Conference on Communications Workshops (ICC Workshops), Rome, Italy, 2023: 925–930. doi: 10.1109/ICCWorkshops57953.2023.10283770.
    [10]
    LIU Xin, LIU Yuemin, LIU Zechen, et al. Fair integrated sensing and communication for multi-UAV-enabled internet of things: Joint 3-D trajectory and resource optimization[J]. IEEE Internet of Things Journal, 2024, 11(18): 29546–29556. doi: 10.1109/JIOT.2023.3327445.
    [11]
    JIANG Wangjun, WANG Ailing, WEI Zhiqing, et al. Improve sensing and communication performance of UAV via integrated sensing and communication[C]. 2021 IEEE 21st International Conference on Communication Technology (ICCT), Tianjin, China, 2021: 644–648, doi: 10.1109/ICCT52962.2021.9657955.
    [12]
    PAN Yu, LI Ruoguang, DA Xinyu, et al. Cooperative trajectory planning and resource allocation for UAV-enabled integrated sensing and communication systems[J]. IEEE Transactions on Vehicular Technology, 2024, 73(5): 6502–6516. doi: 10.1109/TVT.2023.3337106.
    [13]
    CHENG Yizong. Mean shift, mode seeking, and clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(8): 790–799. doi: 10.1109/34.400568.
    [14]
    SHEN Kaiming and YU Wei. Fractional programming for communication systems—Part I: Power control and beamforming[J]. IEEE Transactions on Signal Processing, 2018, 66(10): 2616–2630. doi: 10.1109/TSP.2018.2812733.
    [15]
    XU Dongfang, YU Xianghao, SUN Yan, et al. Resource allocation for IRS-assisted full-duplex cognitive radio systems[J]. IEEE Transactions on Communications, 2020, 68(12): 7376–7394. doi: 10.1109/TCOMM.2020.3020838.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(5)

    Article Metrics

    Article views (312) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return