Advanced Search
Turn off MathJax
Article Contents
ZHONG Weizhi, WAN Shiqing, DUAN Hongtao, FAN Zhenxiong, LIN Zhipeng, HUANG Yang, MAO Kai. A Joint Beamforming Method Based on Cooperative Co-evolutionary in Reconfigurable Intelligent Surface-Assisted Unmanned Aerial Vehicle Communication System[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240561
Citation: ZHONG Weizhi, WAN Shiqing, DUAN Hongtao, FAN Zhenxiong, LIN Zhipeng, HUANG Yang, MAO Kai. A Joint Beamforming Method Based on Cooperative Co-evolutionary in Reconfigurable Intelligent Surface-Assisted Unmanned Aerial Vehicle Communication System[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240561

A Joint Beamforming Method Based on Cooperative Co-evolutionary in Reconfigurable Intelligent Surface-Assisted Unmanned Aerial Vehicle Communication System

doi: 10.11999/JEIT240561
Funds:  The National Natural Science Foundation of China (62271250), The Key Technologies R&D Program of Jiangsu (Prospective and Key Technologies for Industry) (BE2022067, BE2022067-1, BE2022067-3), The Postgraduate Research and Practice Innovation Program of Nanjing University of Aeronautics and Astronautics (xcxjh20231507)
  • Received Date: 2024-07-04
  • Rev Recd Date: 2024-11-07
  • Available Online: 2024-11-13
  • Considering the limitations of traditional joint beamforming methods in optimizing Reconfigurable Intelligent Surface (RIS)-assisted Unmanned Aerial Vehicle (UAV) communication systems, such as solely focusing on the phase shift matrix optimization of RIS and the lack of universality in the optimization approach, a joint beamforming method based on Cooperative Co-Evolutionary Algorithm (CCEA) for the RIS-assisted UAV multi-user communication system is proposed. This method decomposes the joint beamforming problem into subproblems involving RIS reflection beam design and transmitter beam design, which are solved through information exchange and collaboration during the independent evolutionary process of two subpopulations. Simulation results demonstrate that compared to joint beamforming optimization only considering RIS phase shift matrix design, CCEA changes the energy distribution of the reflection wave in three-dimensional space by optimizing the RIS reflection wave shape, leading to improved reception-side Signal-to-Interference-plus-Noise Ratio (SINR) and spectral efficiency. Additionally, CCEA generates more diverse solutions that effectively cover user directions at various UAV and user positions, avoiding local optima and exhibiting greater applicability across different scenarios compared to traditional methods.
  • loading
  • [1]
    ZENG Yong, ZHANG Rui, and LIM T J. Wireless communications with unmanned aerial vehicles: Opportunities and challenges[J]. IEEE Communications Magazine, 2016, 54(5): 36–42. doi: 10.1109/MCOM.2016.7470933.
    [2]
    朱秋明, 华博宇, 毛开, 等. 无人机毫米波信道建模进展和挑战[J]. 数据采集与处理, 2020, 35(6): 1049–1059. doi: 10.16337/j.1004-9037.2020.06.004.

    ZHU Qiuming, HUA Boyu, MAO Kai, et al. Advances and challenges of UAV millimeter-wave channel modeling[J]. Journal of Data Acquisition and Processing, 2020, 35(6): 1049–1059. doi: 10.16337/j.1004-9037.2020.06.004.
    [3]
    朱秋明, 倪浩然, 华博宇, 等. 无人机毫米波信道测量与建模研究综述[J]. 移动通信, 2022, 46(12): 2–11. doi: 10.3969/j.issn.1006-1010.20221114-0001.

    ZHU Qiuming, NI Haoran, HUA Boyu, et al. A survey of UAV millimeter-wave channel measurement and modeling[J]. Mobile Communications, 2022, 46(12): 2–11. doi: 10.3969/j.issn.1006-1010.20221114-0001.
    [4]
    PANG Xiaowei, SHENG Min, ZHAO Nan, et al. When UAV meets IRS: Expanding air-ground networks via passive reflection[J]. IEEE Wireless Communications, 2021, 28(5): 164–170. doi: 10.1109/MWC.010.2000528.
    [5]
    WU Qingqing and ZHANG Rui. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5394–5409. doi: 10.1109/TWC.2019.2936025.
    [6]
    MA Dong, DING Ming, and HASSAN M. Enhancing cellular communications for UAVs via intelligent reflective surface[C]. 2020 IEEE Wireless Communications and Networking Conference (WCNC), Seoul, Korea (South), 2020: 1–6. doi: 10.1109/WCNC45663.2020.9120632.
    [7]
    LIU Xin, YU Yingfeng, PENG Bao, et al. RIS-UAV enabled worst-case downlink secrecy rate maximization for mobile vehicles[J]. IEEE Transactions on Vehicular Technology, 2023, 72(5): 6129–6141. doi: 10.1109/TVT.2022.3231376.
    [8]
    NA Zhenyu, LIU Yue, SHI Jingcheng, et al. UAV-supported clustered NOMA for 6G-enabled internet of things: Trajectory planning and resource allocation[J]. IEEE Internet of Things Journal, 2021, 8(20): 15041–15048. doi: 10.1109/JIOT.2020.3004432.
    [9]
    NA Zhenyu, JI Chenglan, LIN Bin, et al. Joint optimization of trajectory and resource allocation in secure UAV relaying communications for internet of things[J]. IEEE Internet of Things Journal, 2022, 9(17): 16284–16296. doi: 10.1109/JIOT.2022.3151105.
    [10]
    YE Jia, QIAO Jingping, KAMMOUN A, et al. Nonterrestrial communications assisted by reconfigurable intelligent surfaces[J]. Proceedings of the IEEE, 2022, 110(9): 1423–1465. doi: 10.1109/JPROC.2022.3169690.
    [11]
    HUANG Chongwen, MO Ronghong, and YUEN C. Reconfigurable intelligent surface assisted multiuser MISO systems exploiting deep reinforcement learning[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1839–1850. doi: 10.1109/JSAC.2020.3000835.
    [12]
    万诗晴, 仲伟志, 何艺, 等. 基于深度强化学习的可重构智能超表面辅助无人机通信联合波束成形与轨迹优化[J]. 电波科学学报, 2024, 39(4): 722–731. doi: 10.12265/j.cjors.2023233.

    WAN Shiqing, ZHONG Weizhi, HE Yi, et al. The optimization of beamforming and trajectory for reconfigurable intelligent surface assisted UAV communication system based on deep reinforcement learning[J]. Chinese Journal of Radio Science, 2024, 39(4): 722–731. doi: 10.12265/j.cjors.2023233.
    [13]
    DANG Jian, ZHANG Zaichen, LI Yewei, et al. Fast and arbitrary beam pattern design for RIS-assisted terahertz wireless communication[J]. IEEE Transactions on Vehicular Technology, 2023, 72(2): 2620–2625. doi: 10.1109/TVT.2022.3209669.
    [14]
    RAJAGOPALAN H and RAHMAT-SAMII Y. Loss quantification for microstrip reflectarray: Issue of high fields and currents[C]. 2008 IEEE Antennas and Propagation Society International Symposium, San Diego, USA, 2008: 1–4. doi: 10.1109/APS.2008.4619755.
    [15]
    ABEYWICKRAMA S, ZHANG Rui, WU Qingqing, et al. Intelligent reflecting surface: Practical phase shift model and beamforming optimization[J]. IEEE Transactions on Communications, 2020, 68(9): 5849–5863. doi: 10.1109/TCOMM.2020.3001125.
    [16]
    SAREMI S, MIRJALILI S, and LEWIS A. Biogeography-based optimisation with chaos[J]. Neural Computing and Applications, 2014, 25(5): 1077–1097. doi: 10.1007/s00521-014-1597-x.
    [17]
    何艺, 仲伟志, 万诗晴, 等. 智能反射面辅助的MU-MISO车联网毫米波通信联合波束赋形[J]. 信号处理, 2024, 40(2): 336–344. doi: 10.16798/j.issn.1003-0530.2024.02.011.

    HE Yi, ZHONG Weizhi, WAN Shiqing, et al. Joint beamforming for IRS-aided MU-MISO millimeter wave communication of vehicular network[J]. Journal of Signal Processing, 2024, 40(2): 336–344. doi: 10.16798/j.issn.1003-0530.2024.02.011.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(4)

    Article Metrics

    Article views (153) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return