Citation: | YAO Tingting, ZHAO Hengxin, FENG Zihao, HU Qing. A Context-Aware Multiple Receptive Field Fusion Network for Oriented Object Detection in Remote Sensing Images[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240560 |
[1] |
RAO Chaofan, WANG Jiabao, CHENG Gong, et al. Learning orientation-aware distances for oriented object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5610911. doi: 10.1109/TGRS.2023.3278933.
|
[2] |
XIE Xingxing, CHENG Gong, WANG Jiabao, et al. Oriented R-CNN for object detection[C]. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, Canada, 2021: 3520–3529. doi: 10.1109/ICCV48922.2021.00350.
|
[3] |
REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031.
|
[4] |
YANG Xue, YANG Jirui, YAN Junchi, et al. SCRDet: Towards more robust detection for small, cluttered and rotated objects[C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), 2019: 8232–8241. doi: 10.1109/ICCV.2019.00832.
|
[5] |
LI Zhonghua, HOU Biao, WU Zitong, et al. FCOSR: A simple anchor-free rotated detector for aerial object detection[J]. Remote Sensing, 2023, 15(23): 5499. doi: 10.3390/rs15235499.
|
[6] |
TIAN Yang, ZHANG Mengmeng, LI Jinyu, et al. FPNFormer: Rethink the method of processing the rotation-invariance and rotation-equivariance on arbitrary-oriented object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5605610. doi: 10.1109/TGRS.2024.3351156.
|
[7] |
MING Qi, MIAO Lingjuan, ZHOU Zhiqiang, et al. CFC-Net: A critical feature capturing network for arbitrary-oriented object detection in remote-sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5605814. doi: 10.1109/TGRS.2021.3095186.
|
[8] |
REN Zhida, TANG Yongqiang, HE Zewen, et al. Ship detection in high-resolution optical remote sensing images aided by saliency information[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5623616. doi: 10.1109/TGRS.2022.3173610.
|
[9] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
|
[10] |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 936–944. doi: 10.1109/CVPR.2017.106.
|
[11] |
LUO Wenjie, LI Yujia, URTASUN R, et al. Understanding the effective receptive field in deep convolutional neural networks[C]. The 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 4905–4913.
|
[12] |
LI Yuxuan, HOU Qibin, ZHENG Zhaohui, et al. Large selective kernel network for remote sensing object detection[C]. 2023 IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 2023: 16748–16759. doi: 10.1109/ICCV51070.2023.01540.
|
[13] |
LIU Ze, LIN Yutong, CAO Yue, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, Canada, 2021: 9992–10002. doi: 10.1109/ICCV48922.2021.00986.
|
[14] |
CHENG Gong, WANG Jiabao, LI Ke, et al. Anchor-free oriented proposal generator for object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5625411. doi: 10.1109/TGRS.2022.3183022.
|
[15] |
LIU Zikun, WANG Hongzhen, WENG Lubin, et al. Ship rotated bounding box space for ship extraction from high-resolution optical satellite images with complex backgrounds[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(8): 1074–1078. doi: 10.1109/LGRS.2016.2565705.
|
[16] |
ZENG Ying, CHEN Yushi, YANG Xue, et al. ARS-DETR: Aspect ratio-sensitive detection transformer for aerial oriented object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5610315. doi: 10.1109/TGRS.2024.3364713.
|
[17] |
EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The pascal Visual Object Classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303–338. doi: 10.1007/s11263-009-0275-4.
|
[18] |
XU Yongchao, FU Mingtao, WANG Qimeng, et al. Gliding vertex on the horizontal bounding box for multi-oriented object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(4): 1452–1459. doi: 10.1109/TPAMI.2020.2974745.
|
[19] |
HAN Jiaming, DING Jian, LI Jie, et al. Align deep features for oriented object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5602511. doi: 10.1109/TGRS.2021.3062048.
|
[20] |
YANG Xue, YAN Junchi, FENG Ziming, et al. R3Det: Refined single-stage detector with feature refinement for rotating object[C]. Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, 2021: 3163–3171. doi: 10.1609/aaai.v35i4.16426.
|
[21] |
CHEN Weining, MIAO Shencheng, WANG Guangxing, et al. Recalibrating features and regression for oriented object detection[J]. Remote Sensing, 2023, 15(8): 2134. doi: 10.3390/rs15082134.
|
[22] |
YAO Yanqing, CHENG Gong, WANG Guangxing, et al. On improving bounding box representations for oriented object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5600111. doi: 10.1109/TGRS.2022.3231340.
|
[23] |
ZHAO Zifei and LI Shengyang. ABFL: Angular boundary discontinuity free loss for arbitrary oriented object detection in aerial images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5611411. doi: 10.1109/TGRS.2024.3368630.
|
[24] |
XIE Xingxing, CHENG Gong, RAO Chaofan, et al. Oriented object detection via contextual dependence mining and penalty-incentive allocation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5618010. doi: 10.1109/TGRS.2024.3385985.
|