Advanced Search
Turn off MathJax
Article Contents

doi: 10.11999/JEIT240528
Funds:  The National Natural Science Foundation of China (62388102, 62101583)
  • Received Date: 2024-06-25
  • Rev Recd Date: 2025-02-17
  • Available Online: 2025-02-24
  • loading
  • [1]
    关键. 雷达海上目标特性综述[J]. 雷达学报, 2020, 9(4): 674–683. doi: 10.12000/JR20114.

    GUAN Jian. Summary of marine radar target characteristics[J]. Journal of Radars, 2020, 9(4): 674–683. doi: 10.12000/JR20114.
    [2]
    BI Xiaowen, GUO Shenglong, YANG Yunxiu, et al. Adaptive target extraction method in sea clutter based on fractional Fourier filtering[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5115609. doi: 10.1109/TGRS.2022.3192893.
    [3]
    SHI Sainan and SHUI Penglang. Sea-surface floating small target detection by one-class classifier in time-frequency feature space[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(11): 6395–6411. doi: 10.1109/ TGRS.2018.2838260. doi: 10.1109/TGRS.2018.2838260.
    [4]
    XU Shuwen, ZHENG Jibin, PU Jia, et al. Sea-surface floating small target detection based on polarization features[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(10): 1505–1509. doi: 10.1109/LGRS.2018.2852560.
    [5]
    陈世超, 高鹤婷, 罗丰. 基于极化联合特征的海面目标检测方法[J]. 雷达学报, 2020, 9(4): 664–673. doi: 10.12000/ JR20072. doi: 10.12000/JR20072.

    CHEN Shichao, GAO Heting, and LUO Feng. Target detection in sea clutter based on combined characteristics of polarization[J]. Journal of Radars, 2020, 9(4): 664–673. doi: 10.12000/JR20072.
    [6]
    LO T, LEUNG H, LITVA J, et al. Fractal characterisation of sea-scattered signals and detection of sea-surface targets[J]. IEE Proceedings F: Radar and Signal Processing, 1993, 140(4): 243–250. doi: 10.1049/ip-f-2.1993.0034.
    [7]
    FAN Yifei, TAO Mingliang, and SU Jia. Multifractal correlation analysis of autoregressive spectrum-based feature learning for target detection within sea clutter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5108811. doi: 10.1109/TGRS.2021.3137466.
    [8]
    关键, 伍僖杰, 丁昊, 等. 基于对角积分双谱的海面慢速小目标检测方法[J]. 电子与信息学报, 2022, 44(7): 2449–2460. doi: 10.11999/JEIT210408.

    GUAN Jian, WU Xijie, DING Hao, et al. A method for detecting small slow targets in sea surface based on diagonal integrated bispectrum[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2449–2460. doi: 10.11999/JEIT210408.
    [9]
    关键, 姜星宇, 刘宁波, 等. 海杂波背景下的双极化最大特征值目标检测[J]. 系统工程与电子技术, 2024, 46(11): 3715–3725. doi: 10.12305/j.issn.1001-506X.2024.11.13.

    GUAN Jian, JIANG Xingyu, LIU Ningbo, et al. Target detection using dual-polarization maximum eigenvalue in sea clutter background[J]. Systems Engineering and Electronics, 2024, 46(11): 3715–3725. doi: 10.12305/j.issn.1001-506X.2024.11.13.
    [10]
    董云龙, 张兆祥, 丁昊, 等. 基于三特征预测的海杂波中小目标检测方法[J]. 雷达学报, 2023, 12(4): 762–775. doi: 10.12000/JR23037.

    DONG Yunlong, ZHANG Zhaoxiang, DING Hao, et al. Target detection in sea clutter using a three-feature prediction-based method[J]. Journal of Radars, 2023, 12(4): 762–775. doi: 10.12000/JR23037.
    [11]
    SHUI Penglang, LI Dongchen, and XU Shuwen. Tri-feature-based detection of floating small targets in sea clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 1416–1430. doi: 10.1109/TAES.2014.120657.
    [12]
    IPIX Radar. The IPIX radar database[EB/OL]. http://soma.ece.mcmaster.ca/ipix/, 2021.
    [13]
    关键, 刘宁波, 王国庆, 等. 雷达对海探测试验与目标特性数据获取——海上目标双极化多海况散射特性数据集[J]. 雷达学报, 2023, 12(2): 456–469. doi: 10.12000/JR23029.

    GUAN Jian, LIU Ningbo, WANG Guoqing, et al. Sea-detecting radar experiment and target feature data acquisition for dual polarization multistate scattering dataset of marine targets[J]. Journal of Radars, 2023, 12(2): 456–469. doi: 10.12000/JR23029.
    [14]
    BARBARESCO F. Algorithme de burg regularise fsds (fonctionnelle stabilisatrice de douceur spectrale) Comparaison avec l'algorithme de burg mfe (Minimum free energy)[C]. Quinzieme Colloque Gretsi - Juan-Les-Pins, 1995: 29–32. (查阅网上资料, 未找到本条文献出版地信息, 请确认) .
    [15]
    LI Yuzhou, XIE Pengcheng, TANG Zeshen, et al. SVM-based sea-surface small target detection: A false-alarm-rate-controllable approach[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(8): 1225–1229. doi: 10.1109/LGRS.2019.2894385.
    [16]
    王鑫, 吴际, 刘超, 等. 基于LSTM循环神经网络的故障时间序列预测[J]. 北京航空航天大学学报, 2018, 44(4): 772–784. doi: 10.13700/j.bh.1001-5965.2017.0285.

    WANG Xin, WU Ji, LIU Chao, et al. Exploring LSTM based recurrent neural network for failure time series prediction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4): 772–784. doi: 10.13700/j.bh.1001-5965.2017.0285.
    [17]
    胡学骏, 罗中良. 基于统计理论的多传感器信息融合方法[J]. 传感器技术, 2002(8): 38–39,43. doi: 10.13873/j.1000-97872002.08.013.

    HU Xuejun and LUO Zhongliang. Method of multi-sensor information fusion based on statistics theory[J]. Transducer and Microsystem Technologies, 2002(8): 38–39,43. doi: 10.13873/j.1000-97872002.08.013.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(6)

    Article Metrics

    Article views (18) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return