Citation: | WU Zhenhua, CUI Jinxin, CAO Yice, ZHANG Qiang, ZHANG Lei, YANG Lixia. Compound Active Jamming Recognition for Zero-memory Incremental Learning[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240521 |
[1] |
魏毅寅, 杨文华. 海战场典型干扰对抗场景及反舰导弹应对策略研究[J]. 战术导弹技术, 2020(5): 1–8. doi: 10.16358/j.issn.1009-1300.2020.1.538.
WEI Yiyin and YANG Wenhua. Study on typical jamming scenes in naval battle field and countermeasures of anti-ship missile[J]. Tactical Missile Technology, 2020(5): 1–8. doi: 10.16358/j.issn.1009-1300.2020.1.538.
|
[2] |
ZHANG Xiang, LAN Lan, ZHU Shengqi, et al. Intelligent suppression of interferences based on reinforcement learning[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(2): 1400–1415. doi: 10.1109/TAES.2023.3336643.
|
[3] |
崔国龙, 余显祥, 魏文强, 等. 认知智能雷达抗干扰技术综述与展望[J]. 雷达学报, 2022, 11(6): 974–1002. doi: 10.12000/JR22191.
CUI Guolong, YU Xianxiang, WEI Wenqiang, et al. An overview of antijamming methods and future works on cognitive intelligent radar[J]. Journal of Radars, 2022, 11(6): 974–1002. doi: 10.12000/JR22191.
|
[4] |
周红平, 王子伟, 郭忠义. 雷达有源干扰识别算法综述[J]. 数据采集与处理, 2022, 37(1): 1–20. doi: 10.16337/j.1004-9037.2022.01.001.
ZHOU Hongping, WANG Ziwei, and GUO Zhongyi. Overview on recognition algorithms of radar active jamming[J]. Journal of Data Acquisition and Processing, 2022, 37(1): 1–20. doi: 10.16337/j.1004-9037.2022.01.001.
|
[5] |
QU Qizhe, WEI Shunjun, LIU Shan, et al. JRNet: Jamming recognition networks for radar compound suppression jamming signals[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15035–15045. doi: 10.1109/TVT.2020.3032197.
|
[6] |
ZHANG Jiaxiang, LIANG Zhennan, ZHOU Chao, et al. Radar compound jamming cognition based on a deep object detection network[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(3): 3251–3263. doi: 10.1109/TAES.2022.3224695.
|
[7] |
LV Qinzhe, QUAN Yinghui, FENG Wei, et al. Radar deception jamming recognition based on weighted ensemble CNN with transfer learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5107511. doi: 10.1109/TGRS.2021.3129645.
|
[8] |
DU Jinbiao, FAN Weiwei, GONG Chen, et al. Aggregated-attention deformable convolutional network for few-shot SAR jamming recognition[J]. Pattern Recognition, 2024, 146: 109990. doi: 10.1016/j.patcog.2023.109990.
|
[9] |
LUO Zhenyu, CAO Yunhe, YEO T S, et al. Few-shot radar jamming recognition network via time-frequency self-attention and global knowledge distillation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5105612. doi: 10.1109/TGRS.2023.3280322.
|
[10] |
ZHOU Hongping, WANG Lei, GUO Zhongyi. Recognition of radar compound jamming based on convolutional neural network[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(6): 7380–7394. doi: 10.1109/TAES.2023.3288080.
|
[11] |
LI Boran, ZHANG Lei, DAI Jingwei, et al. FETTrans: Analysis of compound interference identification based on bidirectional dynamic feature adaptation of improved transformer[J]. IEEE Access, 2022, 10: 66321–66331. doi: 10.1109/ACCESS.2022.3182010.
|
[12] |
MENG Yunyun, YU Lei, and WEI Yinsheng. Multi-label radar compound jamming signal recognition using complex-valued CNN with jamming class representation fusion[J]. Remote Sensing, 2023, 15(21): 5180. doi: 10.3390/rs15215180.
|
[13] |
ZHOU Hongping, WANG Lei, MA Minghui, et al. Compound radar jamming recognition based on signal source separation[J]. Signal Processing, 2024, 214: 109246. doi: 10.1016/j.sigpro.2023.109246.
|
[14] |
LV Qinzhe, FAN Hanxin, LIU Junliang, et al. Multilabel deep learning-based lightweight radar compound jamming recognition method[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 2521115. doi: 10.1109/TIM.2024.3400337.
|
[15] |
KONG Yukai, XIA Senlin, DONG Luxin, et al. Compound jamming recognition via contrastive learning for distributed MIMO radars[J]. IEEE Transactions on Vehicular Technology, 2024, 73(6): 7892–7907. doi: 10.1109/TVT.2024.3358996.
|
[16] |
TAO Xiaoyu, HONG Xiaopeng, CHANG Xinyuan, et al. Few-shot class-incremental learning[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 12183–12192. doi: 10.1109/CVPR42600.2020.01220.
|
[17] |
LI Bin, CUI Zongyong, WANG Haohan, et al. SAR incremental automatic target recognition based on mutual information maximization[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 4005305. doi: 10.1109/LGRS. 2024.3368063.
|
[18] |
SERBES A. On the estimation of LFM signal parameters: Analytical formulation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(2): 848–860. doi: 10.1109/TAES.2017.2767978.
|
[19] |
WANG J X. Meta-learning in natural and artificial intelligence[J]. Current Opinion in Behavioral Sciences, 2021, 38: 90–95. doi: 10.1016/j.cobeha.2021.01.002.
|
[20] |
SANTORO A, BARTUNOV S, BOTVINICK M, et al. Meta-learning with memory-augmented neural networks[C]. The 33rd International Conference on International Conference on Machine Learning, New York, USA, 2016: 1842-1850.
|
[21] |
KARUNARATNE G, SCHMUCK M, LE GALLO M, et al. Robust high-dimensional memory-augmented neural networks[J]. Nature Communications, 2021, 12(1): 2468. doi: 10.1038/s41467-021-22364-0.
|
[22] |
VEILLEUX O, BOUDIAF M, PIANTANIDA P, et al. Realistic evaluation of transductive few-shot learning[C]. Proceedings of the 35th International Conference on Neural Information Processing Systems, 2021: 711.
|
[23] |
ZHANG Chi, SONG Nan, LIN Guosheng, et al. Few-shot incremental learning with continually evolved classifiers[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 12455–12464. doi: 10.1109/CVPR46437.2021.01227.
|
[24] |
REBUFFI S A, KOLESNIKOV A, SPERL G, et al. iCaRL: Incremental classifier and representation learning[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 2001–2010. doi: 10.1109/cvpr.2017.587.
|
[25] |
SHI Guangyuan, CHEN Jiaxin, ZHANG Wenlong, et al. Overcoming catastrophic forgetting in incremental few-shot learning by finding flat minima[C]. The 35th International Conference on Neural Information Processing Systems, 2021: 517.
|
[26] |
ZHOU Dawei, WANG Fuyun, YE Hanjia, et al. Forward compatible few-shot class-incremental learning[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 9046–9056. doi: 10.1109/cvpr52688.2022.00884.
|