Citation: | YU Mei, ZHOU Tao, CHEN Yeyao, JIANG Zhidi, LUO Ting, JIANG Gangyi. Light Field Angular Reconstruction Based on Template Alignment and Multi-stage Feature Learning[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240481 |
[1] |
CHEN Yeyao, JIANG Gangyi, YU Mei, et al. HDR light field imaging of dynamic scenes: A learning-based method and a benchmark dataset[J]. Pattern Recognition, 2024, 150: 110313. doi: 10.1016/j.patcog.2024.110313.
|
[2] |
ZHAO Chun and JEON B. Compact representation of light field data for refocusing and focal stack reconstruction using depth adaptive multi-CNN[J]. IEEE Transactions on Computational Imaging, 2024, 10: 170–180. doi: 10.1109/TCI.2023.3347910.
|
[3] |
ATTAL B, HUANG Jiabin, ZOLLHOFER M, et al. Learning neural light fields with ray-space embedding[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, USA, 2022: 19787–19797. doi: 10.1109/CVPR52688.2022.01920.
|
[4] |
HUR J, LEE J Y, CHOI J, et al. I see-through you: A framework for removing foreground occlusion in both sparse and dense light field images[C]. 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, USA, 2023: 229–238. doi: 10.1109/WACV56688.2023.00031.
|
[5] |
邓慧萍, 曹召洋, 向森, 等. 基于上下文感知跨层特征融合的光场图像显著性检测[J]. 电子与信息学报, 2023, 45(12): 4489–4498. doi: 10.11999/JEIT221270.
DENG Huiping, CAO Zhaoyang, XIANG Sen, et al. Saliency detection based on context-aware cross-layer feature fusion for light field images[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4489–4498. doi: 10.11999/JEIT221270.
|
[6] |
武迎春, 王玉梅, 王安红, 等. 基于边缘增强引导滤波的光场全聚焦图像融合[J]. 电子与信息学报, 2020, 42(9): 2293–2301. doi: 10.11999/JEIT190723.
WU Yingchun, WANG Yumei, WANG Anhong, et al. Light field all-in-focus image fusion based on edge enhanced guided filtering[J]. Journal of Electronics & Information Technology, 2020, 42(9): 2293–2301. doi: 10.11999/JEIT190723.
|
[7] |
YOON Y, JEON H G, YOO D, et al. Learning a deep convolutional network for light-field image super-resolution[C]. 2015 IEEE International Conference on Computer Vision Workshop (ICCVW), Santiago, Chile, 2015: 57–65. doi: 10.1109/ICCVW.2015.17.
|
[8] |
YEUNG H W F, HOU Junhui, CHEN Jie, et al. Fast light field reconstruction with deep coarse-to-fine modeling of spatial-angular clues[C]. 2018 European Conference on Computer Vision (ECCV), Munich, Germany, 2018: 138–154. doi: 10.1007/978-3-030-01231-1_9.
|
[9] |
WU Gaochang, ZHAO Mandan, WANG Liangyong, et al. Light field reconstruction using deep convolutional network on EPI[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 1638–1646. doi: 10.1109/CVPR.2017.178.
|
[10] |
WANG Yunlong, LIU Fei, WANG Zilei, et al. End-to-end view synthesis for light field imaging with pseudo 4DCNN[C]. 2018 European Conference on Computer Vision (ECCV), Munich, Germany, 2018, pp. 340–355. doi: 10.1007/978-3-030-01216-8_21.
|
[11] |
WANG Yingqian, WANG Longguang, WU Gaochang, et al. Disentangling light fields for super-resolution and disparity estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(1): 425–443. doi: 10.1109/TPAMI.2022.3152488.
|
[12] |
KALANTARI N K, WANG Tingchun, and RAMAMOORTHI R. Learning-based view synthesis for light field cameras[J]. ACM Transactions on Graphics, 2016, 35(6): 193. doi: 10.1145/2980179.2980251.
|
[13] |
WU Gaochang, LIU Yebin, DAI Qionghai, et al. Learning sheared EPI structure for light field reconstruction[J]. IEEE Transactions on Image Processing, 2019, 28(7): 3261–3273. doi: 10.1109/TIP.2019.2895463.
|
[14] |
JIN Jing, HOU Junhui, YUAN Hui, et al. Learning light field angular super-resolution via a geometry-aware network[C]. 2020 34th AAAI Conference on Artificial Intelligence, New York, USA, 2020: 11141–11148. doi: 10.1609/aaai.v34i07.6771.
|
[15] |
JIN Jing, HOU Junhui, CHEN Jie, et al. Deep coarse-to-fine dense light field reconstruction with flexible sampling and geometry-aware fusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(4): 1819–1836. doi: 10.1109/TPAMI.2020.3026039.
|
[16] |
HAN Kang and XIANG Wei. Inference-reconstruction variational autoencoder for light field image reconstruction[J]. IEEE Transactions on Image Processing, 2022, 31: 5629–5644. doi: 10.1109/TIP.2022.3197976.
|
[17] |
ÇETINKAYA E, AMIRPOUR H, and TIMMERER C. LFC-SASR: Light field coding using spatial and angular super-resolution[C]. 2022 IEEE International Conference on Multimedia and Expo Workshops (ICMEW), Taipei City, China, 2022: 1–6. doi: 10.1109/ICMEW56448.2022.9859373.
|
[18] |
AMIRPOUR H, TIMMERER C, and GHANBARI M. SLFC: Scalable light field coding[C]. 2021 Data Compression Conference (DCC), Snowbird, USA, 2021: 43–52. doi: 10.1109/DCC50243.2021.00012.
|
[19] |
ZHANG Yulun, TIAN Yapeng, KONG Yu, et al. Residual dense network for image super-resolution[C] 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, USA, 2018: 2472–2481. doi: 10.1109/CVPR.2018.00262.
|
[20] |
HAN Dongchen, YE Tianzhu, HAN Yizeng, et al. Agent attention: On the integration of softmax and linear attention[C]. 18th European Conference on Computer Vision, Milan, Italy, 2024: 124–140. doi: 10.1007/978-3-031-72973-7_8.
|
[21] |
RAJ A S, LOWNEY M, SHAH R, et al. Stanford Lytro light field archive[EB/OL]. http://lightfields.stanford.edu/LF2016.html, 2016.
|
[22] |
RERABEK M and EBRAHIMI T. New light field image dataset[C]. 8th International Conference on Quality of Multimedia Experience, Lisbon, Portugal, 2016.
|