Advanced Search
Turn off MathJax
Article Contents
DENG Honggao, YU Runhua, JI Yuanfa, WU Sunyong, SUN Shaoshuai. An Adaptive Target Tracking Method Utilizing Marginalized Cubature Kalman Filter with Uncompensated Biases[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240469
Citation: DENG Honggao, YU Runhua, JI Yuanfa, WU Sunyong, SUN Shaoshuai. An Adaptive Target Tracking Method Utilizing Marginalized Cubature Kalman Filter with Uncompensated Biases[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240469

An Adaptive Target Tracking Method Utilizing Marginalized Cubature Kalman Filter with Uncompensated Biases

doi: 10.11999/JEIT240469
Funds:  The National Natural Science Foundation of China (U23A20280, 62061010, 62161007), Guangxi Science and Technology Department Project(AB23026120)
  • Received Date: 2024-06-11
  • Rev Recd Date: 2024-12-02
  • Available Online: 2024-12-09
  • An adaptive target tracking method based on marginalized cubature Kalman filter is proposed for the target tracking problem in the presence of sensor measurement biases and unknown time-varying measurement noise. In this method, the constant measurement biases are eliminated by measurement differencing and the abrupt measurement biases can be identified by constructing the beta-Bernoulli indicator variable. The target states at adjacent moments are augmented to meet real-time filtering. The inverse Wishart distribution is used to model the covariance matrix of unknown measurement noise. Consequently, the joint distribution of the target state, indicator variable, and noise covariance matrix can be established, and the approximate posterior of each parameter is solved by variational Bayesian inference. To reduce the computational burden, the augmented state vector is marginalized, and the target tracking based marginal cubature Kalman filter is realized by combining with cubature Kalman filter. Simulation results demonstrate that the proposed method effectively handles the abrupt measurement biases and unknown time-varying measurement noise, achieving accurate target tracking.
  • loading
  • [1]
    LIN X and BAR-SHALOM Y. Multisensor target tracking performance with bias compensation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(3): 1139–1149. doi: 10.1109/TAES.2006.248212.
    [2]
    董云龙, 张焱. 雷达系统偏差精确配准技术研究综述[J]. 现代雷达, 2024, 46(3): 1–8. doi: 10.16592/j.cnki.1004-7859.2024.03.001.

    DONG Yunlong and ZHANG Yan. A review of radar system deviation accurate registration technology[J]. Modern Radar, 2024, 46(3): 1–8. doi: 10.16592/j.cnki.1004-7859.2024.03.001.
    [3]
    崔亚奇, 熊伟, 何友. 基于MLR的机动平台传感器误差配准算法[J]. 航空学报, 2012, 33(1): 118–128. doi: 11-1929/V.20111213.1132.001.

    CUI Yaqi, XIONG Wei, and HE You. Mobile platform sensor registration algorithm based on MLR[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(1): 118–128. doi: 11-1929/V.20111213.1132.001.
    [4]
    XIU Jianjuan, DONG Kai, and HE You. Systematic error real-time registration based on modified input estimation[J]. Journal of Systems Engineering and Electronics, 2016, 27(5): 986–992. doi: 10.21629/JSEE.2016.05.06.
    [5]
    GENG Han, LIANG Yan, LIU Yurong, et al. Bias estimation for asynchronous multi-rate multi-sensor fusion with unknown inputs[J]. Information Fusion, 2018, 39: 139–153. doi: 10.1016/j.inffus.2017.03.002.
    [6]
    CHUGHTAI A H, MAJAL A, TAHIR M, et al. Variational-based nonlinear Bayesian filtering with biased observations[J]. IEEE Transactions on Signal Processing, 2022, 70: 5295–5307. doi: 10.1109/TSP.2022.3217921.
    [7]
    HUANG Yulong, JIA Guangle, CHEN Badong, et al. A new robust Kalman filter with adaptive estimate of time-varying measurement bias[J]. IEEE Signal Processing Letters, 2020, 27: 700–704. doi: 10.1109/LSP.2020.2983552.
    [8]
    傅惠民, 吴云章, 娄泰山. 欠观测条件下的增量Kalman滤波方法[J]. 机械强度, 2012, 34(1): 43–47. doi: 10.16579/j.issn.1001.9669.2012.01.014.

    FU Huimin, WU Yunzhang, and LOU Taishan. Incremental Kalman filter method under poor observation condition[J]. Journal of Mechanical Strength, 2012, 34(1): 43–47. doi: 10.16579/j.issn.1001.9669.2012.01.014.
    [9]
    傅惠民, 娄泰山, 吴云章. 欠观测条件下的扩展增量Kalman滤波方法[J]. 航空动力学报, 2012, 27(4): 777–781. doi: 10.13224/j.cnki.jasp.2012.04.004.

    FU Huimin, LOU Taishan, and WU Yunzhang. Extended incremental Kalman filter method under poor observation condition[J]. Journal of Aerospace Power, 2012, 27(4): 777–781. doi: 10.13224/j.cnki.jasp.2012.04.004.
    [10]
    马丽丽, 赵甜甜, 陈金广. 欠观测条件下的增量容积卡尔曼滤波[J]. 计算机工程, 2014, 40(10): 228–231,238. doi: 10.3969/j.issn.1000-3428.2014.10.043.

    MA Lili, ZHAO Tiantian, and CHEN Jinguang. Incremental cubature Kalman filtering under poor observation condition[J]. Computer Engineering, 2014, 40(10): 228–231,238. doi: 10.3969/j.issn.1000-3428.2014.10.043.
    [11]
    傅惠民, 吴云章, 娄泰山. 自适应无迹增量滤波方法[J]. 航空动力学报, 2013, 28(2): 259–263. doi: 10.13224/j.cnki.jasp.2013.02.008.

    FU Huimin, WU Yunzhang, and LOU Taishan. Adaptive unscented incremental filter method[J]. Journal of Aerospace Power, 2013, 28(2): 259–263. doi: 10.13224/j.cnki.jasp.2013.02.008.
    [12]
    孙小君, 周晗, 闫广明. 基于新息的自适应增量Kalman滤波器[J]. 电子与信息学报, 2020, 42(9): 2223–2230. doi: 10.11999/JEIT190493.

    SUN Xiaojun, ZHOU Han, and YAN Guangming. Adaptive incremental Kalman filter based on innovation[J]. Journal of Electronics & Information Technology, 2020, 42(9): 2223–2230. doi: 10.11999/JEIT190493.
    [13]
    LOU Taishan, YANG Ning, WANG Yan, et al. Target tracking based on incremental center differential Kalman filter with uncompensated biases[J]. IEEE Access, 2018, 6: 66285–66292. doi: 10.1109/ACCESS.2018.2879118.
    [14]
    黄玉龙, 张勇刚, 武哲民, 等. 带有色厚尾量测噪声的鲁棒高斯近似滤波器和平滑器[J]. 自动化学报, 2017, 43(1): 114–131. doi: 10.16383/j.aas.2017.c150810.

    HUANG Yulong, ZHANG Yonggang, WU Zhemin, et al. Robust Gaussian approximate filter and smoother with colored heavy tailed measurement noise[J]. Acta Automatica Sinica, 2017, 43(1): 114–131. doi: 10.16383/j.aas.2017.c150810.
    [15]
    WANG Guoqing, ZHAO Jiaxiang, YANG Chunyu, et al. Robust Kalman filter for systems with colored heavy-tailed process and measurement noises[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70(11): 4256–4260. doi: 10.1109/TCSII.2023.3283547.
    [16]
    WANG Hongwei, LI Hongbin, FANG Jun, et al. Robust Gaussian Kalman filter with outlier detection[J]. IEEE Signal Processing Letters, 2018, 25(8): 1236–1240. doi: 10.1109/LSP.2018.2851156.
    [17]
    HOSTETTLER R and SÄRKKÄ S. Rao-blackwellized Gaussian smoothing[J]. IEEE Transactions on Automatic Control, 2019, 64(1): 305–312. doi: 10.1109/TAC.2018.2828087.
    [18]
    JIA Guangle, HUANG Yulong, ZHANG Yonggang, et al. A novel adaptive Kalman filter with unknown probability of measurement loss[J]. IEEE Signal Processing Letters, 2019, 26(12): 1862–1866. doi: 10.1109/LSP.2019.2951464.
    [19]
    GRANSTRÖM K and ORGUNER U. On the reduction of Gaussian inverse Wishart mixtures[C]. Proceedings of 2012 15th International Conference on Information Fusion, Singapore, 2012: 2162–2169.
    [20]
    GU Peng, JING Zhongliang, and WU Liangbin. Robust adaptive multi-target tracking with unknown measurement and process noise covariance matrices[J]. IET Radar, Sonar & Navigation, 2022, 16(4): 735–747. doi: 10.1049/rsn2.12216.
    [21]
    ZHU Jiangbo, XIE Weixin, and LIU Zongxiang. Student’s t-based robust Poisson multi-Bernoulli mixture filter under heavy-tailed process and measurement noises[J]. Remote Sensing, 2023, 15(17): 4232. doi: 10.3390/rs15174232.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views (41) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return