Citation: | WANG Junhua, LUO Fei, GAO Guangxin, BIN Li. Collaborative Air-Ground Computation Offloading and Resource Optimization in Dynamic Vehicular Network Scenarios[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240464 |
[1] |
ZHANG Haibo, LIU Xiangyu, XU Yongjun, et al. Partial offloading and resource allocation for MEC-assisted vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2024, 73(1): 1276–1288. doi: 10.1109/TVT.2023.3306939.
|
[2] |
LIU Qian, LIANG Hairong, LUO Rui, et al. Energy-efficiency computation offloading strategy in UAV aided V2X network with integrated sensing and communication[J]. IEEE Open Journal of the Communications Society, 2022, 3: 1337–1346. doi: 10.1109/OJCOMS.2022.3195703.
|
[3] |
YU Zhe, GONG Yanmin, GONG Shimin, et al. Joint task offloading and resource allocation in UAV-enabled mobile edge computing[J]. IEEE Internet of Things Journal, 2020, 7(4): 3147–3159. doi: 10.1109/JIOT.2020.2965898.
|
[4] |
HU Jinna, CHEN Chen, CAI Lin, et al. UAV-assisted vehicular edge computing for the 6G internet of vehicles: Architecture, intelligence, and challenges[J]. IEEE Communications Standards Magazine, 2021, 5(2): 12–18. doi: 10.1109/MCOMSTD.001.2000017.
|
[5] |
WANG Junhua, WANG Ling, ZHU Kun, et al. Lyapunov-based joint flight trajectory and computation offloading optimization for UAV-assisted vehicular networks[J]. IEEE Internet of Things Journal, 2024, 11(2): 22243–22256. doi: 10.1109/JIOT.2024.3382242.
|
[6] |
HE Yixin, ZHAI Daosen, ZHANG Ruonan, et al. A mobile edge computing framework for task offloading and resource allocation in UAV-assisted VANETs[C]. IEEE Conference on Computer Communications Workshop, Vancouver, Canada, 2021: 1–6. doi: 10.1109/INFOCOMWKSHPS51825.2021.9484643.
|
[7] |
DUAN Xuting, ZHOU Yukang, TIAN Daxin, et al. Weighted energy-efficiency maximization for a UAV-assisted multiplatoon mobile-edge computing system[J]. IEEE Internet of Things Journal, 2022, 9(19): 18208–18220. doi: 10.1109/JIOT.2022.3155608.
|
[8] |
ZHAO Nan, YE Zhiyang, PEI Yiyang, et al. Multi-agent deep reinforcement learning for task offloading in UAV-assisted mobile edge computing[J]. IEEE Transactions on Wireless Communications, 2022, 21(9): 6949–6960. doi: 10.1109/TWC.2022.3153316.
|
[9] |
ZHANG Liang, JABBARI B, and ANSARI N. Deep reinforcement learning driven UAV-assisted edge computing[J]. IEEE Internet of Things Journal, 2022, 9(24): 25449–25459. doi: 10.1109/JIOT.2022.3196842.
|
[10] |
YAN Ming, XIONG Rui, WANG Yan, et al. Edge computing task offloading optimization for a UAV-assisted internet of vehicles via deep reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2024, 73(4): 5647–5658. doi: 10.1109/TVT.2023.3331363.
|
[11] |
WU Zhiwei, YANG Zilin, YANG Chao, et al. Joint deployment and trajectory optimization in UAV-assisted vehicular edge computing networks[J]. Journal of Communications and Networks, 2022, 24(1): 47–58. doi: 10.23919/JCN.2021.000026.
|
[12] |
YANG Chao, LIU Baichuan, LI Haoyu, et al. Learning based channel allocation and task offloading in temporary UAV-assisted vehicular edge computing networks[J]. IEEE Transactions on Vehicular Technology, 2022, 71(9): 9884–9895. doi: 10.1109/TVT.2022.3177664.
|
[13] |
PENG Haixia and SHEN Xuemin. Multi-agent reinforcement learning based resource management in MEC- and UAV-assisted vehicular networks[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(1): 131–141. doi: 10.1109/JSAC.2020.3036962.
|
[14] |
LIU Yinan, YANG Chao, CHEN Xin, et al. Joint hybrid caching and replacement scheme for UAV-assisted vehicular edge computing networks[J]. IEEE Transactions on Intelligent Vehicles, 2024, 9(1): 866–878. doi: 10.1109/TIV.2023.3323217.
|
[15] |
YAN Junjie, ZHAO Xiaohui, and LI Zan. Deep-reinforcement-learning-based computation offloading in UAV-assisted vehicular edge computing networks[J]. IEEE Internet of Things Journal, 2024, 11(11): 19882–19897. doi: 10.1109/JIOT.2024.3370553.
|
[16] |
ZHANG Wenqian, LÜ Zilong, GE Mengxia, et al. UAV-assisted vehicular edge computing system: Min-max fair offloading and position optimization[J]. IEEE Transactions on Consumer Electronics, 2024. doi: 10.1109/TCE.2024.3426513. (查阅网上资料,未找到本条文献卷期、页码信息,请确认) .
|
[17] |
HAN Zihao, ZHOU Ting, XU Tianheng, et al. Joint user association and deployment optimization for delay-minimized UAV-aided MEC networks[J]. IEEE Wireless Communications Letters, 2023, 12(10): 1791–1795. doi: 10.1109/LWC.2023.3294749.
|
[18] |
FIROZJAE H M, MOGHADDAM J Z, and ARDEBILIPOUR M. A joint trajectory and energy harvesting method for an UAV enabled disaster response network[C]. 13th International Conference on Information and Knowledge Technology, Karaj, Iran, 2022: 1–5. doi: 10.1109/IKT57960.2022.10039000.
|
[19] |
ZHANG Ning, LIU Juan, XIE Lingfu, et al. A deep reinforcement learning approach to energy-harvesting UAV-aided data collection[C]. 2020 International Conference on Wireless Communications and Signal Processing, Nanjing, China, 2020: 93–98. doi: 10.1109/WCSP49889.2020.9299806.
|
[20] |
YANG Zheyuan, BI Suzhi, and ZHANG Y J A. Dynamic offloading and trajectory control for UAV-enabled mobile edge computing system with energy harvesting devices[J]. IEEE Transactions on Wireless Communications, 2022, 21(12): 10515–10528. doi: 10.1109/TWC.2022.3184953.
|
[21] |
CHANG Zheng, LIU Liqing, GUO Xijuan, et al. Dynamic resource allocation and computation offloading for IoT fog computing system[J]. IEEE Transactions on Industrial Informatics, 2021, 17(5): 3348–3357. doi: 10.1109/TII.2020.2978946.
|
[22] |
DAI Xingxia, XIAO Zhu, JIANG Hongbo, et al. UAV-assisted task offloading in vehicular edge computing networks[J]. IEEE Transactions on Mobile Computing, 2024, 23(4): 2520–2534. doi: 10.1109/TMC.2023.3259394.
|
[23] |
WANG Feng, XU Jie, WANG Xin, et al. Joint offloading and computing optimization in wireless powered mobile-edge computing systems[J]. IEEE Transactions on Wireless Communications, 2018, 17(3): 1784–1797. doi: 10.1109/TWC.2017.2785305.
|
[24] |
YUE Yuchen and WANG Junhua. Lyapunov-based dynamic computation offloading optimization in heterogeneous vehicular networks[C]. 2022 IEEE International Symposium on Product Compliance Engineering - Asia, Guangzhou, China, 2022: 1–6. doi: 10.1109/ISPCE-ASIA57917.2022.9971076.
|
[25] |
TREIBER M and KESTING A. Traffic Flow Dynamics: Data, Models and Simulation[M]. Berlin: Springer, 2013. doi: 10.1007/978-3-642-32460-4. (查阅网上资料,未找到本条文献页码信息,请补充) .
|
[26] |
HUANG Liang, BI Suzhi, and ZHANG Y J A. Deep reinforcement learning for online computation offloading in wireless powered mobile-edge computing networks[J]. IEEE Transactions on Mobile Computing, 2020, 19(11): 2581–2593. doi: 10.1109/TMC.2019.2928811.
|
[27] |
DAGANZO C F. Traffic flow theory[M]. DAGANZO C F. Fundamentals of Transportation and Traffic Operations. Oxford: Pergamon, 1997: 66–160. doi: 10.1108/ 9780585475301-004.
|
[28] |
SHI Weisen, LI Junling, CHENG Nan, et al. Multi-drone 3-D trajectory planning and scheduling in drone-assisted radio access networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8): 8145–8158. doi: 10.1109/TVT.2019.2925629.
|
[29] |
SUN Yukun and ZHANG Xing. A2C learning for tasks segmentation with cooperative computing in edge computing networks[C]. 2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 2022: 2236–2241. doi: 10.1109/GLOBECOM48099.2022.10000948.
|