Citation: | CHENG Kefei, CHEN Caidie, LUO Jia, CHEN Qianbin. Optimizing Age of Information in LoRa Networks via Deep Reinforcement Learning[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240404 |
[1] |
KAUL S, YATES R, and GRUTESER M. Real-time status: How often should one update?[C]. IEEE INFOCOM, Orlando, USA, 2012: 2731–2735. doi: 10.1109/INFCOM.2012.6195689.
|
[2] |
INOUE Y, MASUYAMA H, TAKINE T, et al. A general formula for the stationary distribution of the age of information and its application to single-server queues[J]. IEEE Transactions on Information Theory, 2019, 65(12): 8305–8324. doi: 10.1109/TIT.2019.2938171.
|
[3] |
BEDEWY A M, SUN Yin, and SHROFF N B. Minimizing the age of information through queues[J]. IEEE Transactions on Information Theory, 2019, 65(8): 5215–5232. doi: 10.1109/TIT.2019.2912159.
|
[4] |
HE Qing, YUAN Di, and EPHREMIDES A. Optimal link scheduling for age minimization in wireless systems[J]. IEEE Transactions on Information Theory, 2018, 64(7): 5381–5394. doi: 10.1109/TIT.2017.2746751.
|
[5] |
KADOTA I, SINHA A, UYSAL-BIYIKOGLU E, et al. Scheduling policies for minimizing age of information in broadcast wireless networks[J]. IEEE/ACM Transactions on Networking, 2018, 26(6): 2637–2650. doi: 10.1109/TNET.2018.2873606.
|
[6] |
WU Beining, CAI Zhengkun, WU Wei, et al. AoI-aware resource management for smart health via deep reinforcement learning[J]. IEEE Access, 2023, 11: 81180–81195. doi: 10.1109/ACCESS.2023.3299340.
|
[7] |
PENG Kai, XIAO Peiyun, WANG Shangguang, et al. AoI-aware partial computation offloading in IIoT with edge computing: A deep reinforcement learning based approach[J]. IEEE Transactions on Cloud Computing, 2023, 11(4): 3766–3777. doi: 10.1109/TCC.2023.3328614.
|
[8] |
WANG Hao, LIU Chi, YANG Haoming, et al. Ensuring threshold AoI for UAV-assisted mobile crowdsensing by multi-agent deep reinforcement learning with transformer[J]. IEEE/ACM Transactions on Networking, 2024, 32(1): 566–581. doi: 10.1109/TNET.2023.3289172.
|
[9] |
WANG Zhuoyao, XU Xiaokang, and ZHAO Jin. Spreading factor allocation and rate adaption for minimizing age of information in LoRaWAN[C]. 2022 IEEE 24th International Conference on High Performance Computing & Communications; 8th International Conference on Data Science & Systems; 20th International Conference on Smart City; 8th International Conference on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys), Hainan, China, 2022: 482–489. doi: 10.1109/HPCC-DSS-SmartCity-DependSys57074.2022.00092.
|
[10] |
CUOMO F, CAMPO M, CAPONI A, et al. EXPLoRa: Extending the performance of LoRa by suitable spreading factor allocations[C]. Proceedings of the 13th International Conference on Wireless and Mobile Computing, Networking and Communications, Rome, Italy, 2017: 1–8. doi: 10.1109/WiMOB.2017.8115779.
|
[11] |
GEORGIOU O and RAZA U. Low power wide area network analysis: Can LoRa scale?[J]. IEEE Wireless Communications Letters, 2017, 6(2): 162–165. doi: 10.1109/LWC.2016.2647247.
|
[12] |
HAMDI R, QARAQE M, and ALTHUNIBAT S. Dynamic spreading factor assignment in LoRa wireless networks[C]. 2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 2020: 1–5. doi: 10.1109/ICC40277.2020.9149243.
|
[13] |
FARHAD A, KIM D H, STHAPIT P, et al. Interference-aware spreading factor assignment scheme for the massive LoRaWAN network[C]. International Conference on Electronics, Information, and Communications, Auckland, New Zealand, 2019: 1–2. doi: 10.23919/ELINFOCOM.2019.8706416.
|
[14] |
FARHAD A, KIM D H, and PYUN J Y. Resource allocation to massive internet of things in LoRaWANs[J]. Sensors, 2020, 20(9): 2645. doi: 10.3390/s20092645.
|
[15] |
BELTRAMELLI L, MAHMOOD A, ÖSTERBERG P, et al. LoRa beyond aloha: An investigation of alternative random access protocols[J]. IEEE Transactions on Industrial Informatics, 2021, 17(5): 3544–3554. doi: 10.1109/TII.2020.2977046.
|
[16] |
WANG Jiwen, YU Jihong, CHEN Xiaoming, et al. Age of information for frame slotted aloha[J]. IEEE Transactions on Communications, 2023, 71(4): 2121–2135. doi: 10.1109/TCOMM.2023.3244214.
|
[17] |
CHEIKH I, SABIR E, AOUAMI R, et al. Throughput-delay tradeoffs for slotted-aloha-based LoRaWAN networks[C]. International Conference on Wireless Communications and Mobile Computing, Harbin, China, 2021: 2020–2025. doi: 10.1109/IWCMC51323.2021.9498969.
|
[18] |
HAMDI R, BACCOUR E, ERBAD A, et al. LoRa-RL: Deep reinforcement learning for resource management in hybrid energy LoRa wireless networks[J]. IEEE Internet of Things Journal, 2022, 9(9): 6458–6476. doi: 10.1109/JIOT.2021.3110996.
|
[19] |
HONG Shengguang, YAO Fang, ZHANG Fengyun, et al. Reinforcement learning approach for SF allocation in LoRa network[J]. IEEE Internet of Things Journal, 2023, 10(20): 18259–18272. doi: 10.1109/JIOT.2023.3279429.
|
[20] |
WARET A, KANEKO M, GUITTON A, et al. LoRa throughput analysis with imperfect spreading factor orthogonality[J]. IEEE Wireless Communications Letters, 2019, 8(2): 408–411. doi: 10.1109/LWC.2018.2873705.
|
[21] |
HAARNOJA T, ZHOU A, ABBEEL P, et al. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor[C]. The 35th International Conference on Machine Learning, Stockholm, Sweden, 2018: 1856–1865.
|