Advanced Search
Turn off MathJax
Article Contents
XU Yongjun, QIU Youjing, HANG Haibo. Channel Estimation for Intelligent Reflecting Surface Assisted Ambient Backscatter Communication Systems[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240395
Citation: XU Yongjun, QIU Youjing, HANG Haibo. Channel Estimation for Intelligent Reflecting Surface Assisted Ambient Backscatter Communication Systems[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240395

Channel Estimation for Intelligent Reflecting Surface Assisted Ambient Backscatter Communication Systems

doi: 10.11999/JEIT240395
Funds:  The National Natural Science Foundation of China (62271094, U23A20279), Key Fund of Natural Science Foundation of Chongqing (CSTB2022NSCQ-LZX0009, CSTB2023NSCQ-LZX0079), The Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJZD-K202200601)
  • Available Online: 2024-12-12
  • Ambient Backscatter Communication (AmBC) is a new low-power communication technology, which can use Radio Frequency (RF) signal sources in the surrounding environment to realize passive information transmission, but because of the problems such as double fading and obstacles, the signal strength of the reflection link is weak. Therefore, the Intelligent Reflecting Surface (IRS) is introduced into the AmBC system to enhance the reflection link gain. However, both IRS and tag are passive devices, making channel estimation extremely challenging. To solve this problem, an IRS-assisted channel estimation scheme for AmBC system is proposed. First, the channel is decomposed into multiple subchannels, where each subchannel of the reflection link corresponds to an IRS reflection unit. Then, the joint design of IRS reflection patterns and channel estimation is explored by using the least squares method as an estimation criterion with the objective of minimizing the Mean Square Error (MSE). Simulation results show that the channel estimation scheme has good estimation performance.
  • loading
  • [1]
    XU Yongjun, GUI Guan, GACANIN H, et al. A survey on resource allocation for 5G heterogeneous networks: Current research, future trends, and challenges[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 668–695. doi: 10.1109/COMST.2021.3059896.
    [2]
    张晓茜, 徐勇军. 面向零功耗物联网的反向散射通信综述[J]. 通信学报, 2022, 43(11): 199–212. doi: 10.11959/j.issn.1000-436x.2022199.

    ZHANG Xiaoxi and XU Yongjun. Survey on backscatter communication for zero-power IoT[J]. Journal on Communications, 2022, 43(11): 199–212. doi: 10.11959/j.issn.1000-436x.2022199.
    [3]
    XU Yongjun, XIE Hao, WU Qingqing, et al. Robust max-min energy efficiency for RIS-aided HetNets with distortion noises[J]. IEEE Transactions on Communications, 2022, 70(2): 1457–1471. doi: 10.1109/TCOMM.2022.3141798.
    [4]
    GALAPPATHTHIGE D L, REZAEI F, TELLAMBURA C, et al. RIS-empowered ambient backscatter communication systems[J]. IEEE Wireless Communications Letters, 2023, 12(1): 173–177. doi: 10.1109/LWC.2022.3220158.
    [5]
    LE A T, NGUYEN T N, TU L T, et al. Performance analysis of RIS-assisted ambient backscatter communication systems[J]. IEEE Wireless Communications Letters, 2024, 13(3): 791–795. doi: 10.1109/LWC.2023.3344113.
    [6]
    张晓茜, 徐勇军, 吴翠先, 等. 智能反射面增强的全双工环境反向散射通信系统波束成形算法[J]. 电子与信息学报, 2024, 46(3): 914–924. doi: 10.11999/JEIT230356.

    ZHANG Xiaoxi, XU Yongjun, WU Cuixian, et al. Beamforming design for reconfigurable intelligent surface enhanced full-duplex ambient backscatter communication networks[J]. Journal of Electronics & Information Technology, 2024, 46(3): 914–924. doi: 10.11999/JEIT230356.
    [7]
    YANG Hancheng, DING Haiyang, CAO Kunrui, et al. A RIS-segmented symbiotic ambient backscatter communication system[J]. IEEE Transactions on Vehicular Technology, 2024, 73(1): 812–825. doi: 10.1109/TVT.2023.3306037.
    [8]
    MA Shuo, WANG Gongpu, FAN Rongfei, et al. Blind channel estimation for ambient backscatter communication systems[J]. IEEE Communications Letters, 2018, 22(6): 1296–1299. doi: 10.1109/LCOMM.2018.2817555.
    [9]
    ZHAO Wenjing, WANG Gongpu, ATAPATTU S, et al. Blind channel estimation in ambient backscatter communication systems with multiple-antenna reader[C]. Proceedings of 2018 IEEE/CIC International Conference on Communications in China, Beijing, China, 2018: 320–324. doi: 10.1109/ICCChina.2018.8641171.
    [10]
    ZHU Yue, WANG Gongpu, TANG Hengliang, et al. Channel estimation for ambient backscatter systems over frequency-selective channels[C]. Proceedings of 2018 IEEE/CIC International Conference on Communications in China, Beijing, China, 2018: 384–388. doi: 10.1109/ICCChina.2018.8641250.
    [11]
    LIU Xuemeng, LIU Chang, LI Yonghui, et al. Deep residual learning-assisted channel estimation in ambient backscatter communications[J]. IEEE Wireless Communications Letters, 2021, 10(2): 339–343. doi: 10.1109/LWC.2020.3030222.
    [12]
    ABDALLAH S, SALAMEH A I, and SAAD M. Joint channel, carrier frequency offset and I/Q imbalance estimation in ambient backscatter communication systems[J]. IEEE Communications Letters, 2021, 25(7): 2250–2254. doi: 10.1109/LCOMM.2021.3075493.
    [13]
    ABDALLAH S, VERBOVEN Z, SAAD M, et al. Channel estimation for full-duplex multi-antenna ambient backscatter communication systems[J]. IEEE Transactions on Communications, 2023, 71(5): 3059–3072. doi: 10.1109/TCOMM.2023.3251387.
    [14]
    CUI Ziqi, WANG Gongpu, WEI Xusheng, et al. Channel estimation and optimal training design for ambient backscatter communication systems under sensitivity constraint[C]. Proceedings of 2022 IEEE 96th Vehicular Technology Conference, London, United Kingdom, 2022: 1–5. doi: 10.1109/VTC2022-Fall57202.2022.10012695.
    [15]
    CUI Ziqi, WANG Gongpu, GAO Jie, et al. Channel estimation for backscatter communication systems under circuit sensitivity constraint[J]. IEEE Transactions on Vehicular Technology, 2024, 73(5): 7441–7446. doi: 10.1109/TVT.2023.3347926.
    [16]
    ABEYWICKRAMA S, YOU Changsheng, ZHANG Rui, et al. Channel estimation for intelligent reflecting surface assisted backscatter communication[J]. IEEE Wireless Communications Letters, 2021, 10(11): 2519–2523. doi: 10.1109/LWC.2021.3106165.
    [17]
    LIN Junliang, WANG Gongpu, XU Rongtao, et al. Versatile-modulation and megabit-rate backscatter system: Design, implementation, and experimental results[J]. IEEE Internet of Things Journal, 2024, 11(5): 8240–8252. doi: 10.1109/JIOT.2023.3318634.
    [18]
    LI Dong. Two birds with one stone: Exploiting decode-and-forward relaying for opportunistic ambient backscattering[J]. IEEE Transactions on Communications, 2020, 68(3): 1405–1416. doi: 10.1109/TCOMM.2019.2957490.
    [19]
    XU Yongjun, GU Bowen, HU R Q, et al. Joint computation offloading and radio resource allocation in MEC-based wireless-powered backscatter communication networks[J]. IEEE Transactions on Vehicular Technology, 2021, 70(6): 6200–6205. doi: 10.1109/TVT.2021.3077094.
    [20]
    D’AMICO A A and MORELLI M. Symbol-spaced feedforward techniques for blind bit synchronization and channel estimation in FSO-OOK communications[J]. IEEE Transactions on Communications, 2024, 72(1): 361–374. doi: 10.1109/TCOMM.2023.3317931.
    [21]
    GU Bowen, LI Dong, LIU Ye, et al. Exploiting constructive interference for backscatter communication systems[J]. IEEE Transactions on Communications, 2023, 71(7): 4344–4359. doi: 10.1109/TCOMM.2023.3277519.
    [22]
    XIE Ning, XU Yuntao, ZHANG Jiaheng, et al. Joint estimation of channel responses and phase noises in asynchronous MIMO systems with intentional timing offset[J]. IEEE Transactions on Communications, 2023, 71(1): 412–426. doi: 10.1109/TCOMM.2022.3223711.
    [23]
    SENGIJPTA S K. Fundamentals of statistical signal processing: Estimation theory[J]. Technometrics, 1995, 37(4): 465–466. doi: 10.1080/00401706.1995.10484391.
    [24]
    MISHRA D and JOHANSSON H. Channel estimation and low-complexity beamforming design for passive intelligent surface assisted MISO wireless energy transfer[C]. Proceedings of 2019 IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, United Kingdom, 2019: 4659–4663. doi: 10.1109/ICASSP.2019.8683663.
    [25]
    JENSEN T L and DE CARVALHO E. An optimal channel estimation scheme for intelligent reflecting surfaces based on a minimum variance unbiased estimator[C]. Proceedings of 2020 IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, Spain, 2020: 5000–5004. doi: 10.1109/ICASSP40776.2020.9053695.
    [26]
    ZHOU Zhengyi, GE Ning, WANG Zhaocheng, et al. Joint transmit precoding and reconfigurable intelligent surface phase adjustment: A decomposition-aided channel estimation approach[J]. IEEE Transactions on Communications, 2021, 69(2): 1228–1243. doi: 10.1109/TCOMM.2020.3034259.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (43) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return