Citation: | ZHANG Yinhui, ZHANG Jinkai, HE Zifen, LIU Jiacen, WU Lin, LI Zhenhui, CHEN Guangchen. Global Perception and Sparse Feature Associate Image-level Weakly Supervised Pathological Image Segmentation[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3672-3682. doi: 10.11999/JEIT240364 |
[1] |
BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2018, 68(6): 394–424. doi: 10.3322/caac.21492.
|
[2] |
ZIDAN U, GABER M M, and ABDELSAMEA M M. SwinCup: Cascaded swin transformer for histopathological structures segmentation in colorectal cancer[J]. Expert Systems with Applications, 2023, 216: 119452. doi: 10.1016/j.eswa.2022.119452.
|
[3] |
JIA Zhipeng, HUANG Xingyi, CHANG E I C, et al. Constrained deep weak supervision for histopathology image segmentation[J]. IEEE Transactions on Medical Imaging, 2017, 36(11): 2376–2388. doi: 10.1109/TMI.2017.2724070.
|
[4] |
CAI Hongmin, YI Weiting, LI Yucheng, et al. A regional multiple instance learning network for whole slide image segmentation[C]. 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Las Vegas, USA, 2022: 922–928. doi: 10.1109/BIBM55620.2022.9995017.
|
[5] |
LI Kailu, QIAN Ziniu, HAN Yingnan, et al. Weakly supervised histopathology image segmentation with self-attention[J]. Medical Image Analysis, 2023, 86: 102791. doi: 10.1016/j.media.2023.102791.
|
[6] |
ZHOU Yanzhao, ZHU Yi, YE Qixiang, et al. Weakly supervised instance segmentation using class peak response[C]. The 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 3791–3800. doi: 10.1109/CVPR.2018.00399.
|
[7] |
ZHONG Lanfeng, WANG Guotai, LIAO Xin, et al. HAMIL: High-resolution activation maps and interleaved learning for weakly supervised segmentation of histopathological images[J]. IEEE Transactions on Medical Imaging, 2023, 42(10): 2912–2923. doi: 10.1109/TMI.2023.3269798.
|
[8] |
HAN Chu, LIN Jiatai, MAI Jinhai, et al. Multi-layer pseudo-supervision for histopathology tissue semantic segmentation using patch-level classification labels[J]. Medical Image Analysis, 2022, 80: 102487. doi: 10.1016/j.media.2022.102487.
|
[9] |
DIETTERICH T G, LATHROP R H, and LOZANO-PÉREZ T. Solving the multiple instance problem with axis-parallel rectangles[J]. Artificial Intelligence, 1997, 89(1/2): 31–71. doi: 10.1016/S0004-3702(96)00034-3.
|
[10] |
XU Gang, SONG Zhigang, SUN Zhuo, et al. CAMEL: A weakly supervised learning framework for histopathology image segmentation[C]. The 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 10681–10690. doi: 10.1109/ICCV.2019.01078.
|
[11] |
徐金东, 赵甜雨, 冯国政, 等. 基于上下文模糊C均值聚类的图像分割算法[J]. 电子与信息学报, 2021, 43(7): 2079–2086. doi: 10.11999/JEIT200263.
XU Jindong, ZHAO Tianyu, FENG Guozheng, et al. Image segmentation algorithm based on context fuzzy C-means clustering[J]. Journal of Electronics & Information Technology, 2021, 43(7): 2079–2086. doi: 10.11999/JEIT200263.
|
[12] |
杭昊, 黄影平, 张栩瑞, 等. 面向道路场景语义分割的移动窗口变换神经网络设计[J]. 光电工程, 2024, 51(1): 230304. doi: 10.12086/oee.2024.230304.
HANG Hao, HUANG Yingping, ZHANG Xurui, et al. Design of Swin Transformer for semantic segmentation of road scenes[J]. Opto-Electronic Engineering, 2024, 51(1): 230304. doi: 10.12086/oee.2024.230304.
|
[13] |
QIAN Ziniu, LI Kailu, LAI Maode, et al. Transformer based multiple instance learning for weakly supervised histopathology image segmentation[C]. The 25th International Conference on Medical Image Computing and Computer-Assisted Intervention, Singapore, 2022: 160–170. doi: 10.1007/978-3-031-16434-7_16.
|
[14] |
HUANG Zilong, WANG Xinggang, HUANG Lichao, et al. CCNet: Criss-cross attention for semantic segmentation [C]. The IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 603–612. doi: 10.1109/ICCV.2019.00069.
|
[15] |
RU Lixiang, ZHAN Yibing, YU Baosheng, et al. Learning affinity from attention: End-to-end weakly-supervised semantic segmentation with transformers[C]. The 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 16825–16834. doi: 10.1109/CVPR52688.2022.01634.
|
[16] |
XIE Yuhan, ZHANG Zhiyong, CHEN Shaolong, et al. Detect, Grow, Seg: A weakly supervision method for medical image segmentation based on bounding box[J]. Biomedical Signal Processing and Control, 2023, 86: 105158. doi: 10.1016/j.bspc.2023.105158.
|
[17] |
KWEON H, YOON S H, KIM H, et al. Unlocking the potential of ordinary classifier: Class-specific adversarial erasing framework for weakly supervised semantic segmentation[C]. The 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 6974–6983. doi: 10.1109/ICCV48922.2021.00691.
|
[18] |
HOWARD A, SANDLER M, CHEN Bo, et al. Searching for MobileNetV3[C]. The 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 1314–1324. doi: 10.1109/ICCV.2019.00140.
|
[19] |
VIOLA P, PLATT J C, and ZHANG Cha. Multiple instance boosting for object detection[J]. Proceedings of the 18th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2005: 1417–1424.
|
[20] |
RONNEBERGER O, FISCHER P, and BROX T. U-net: Convolutional networks for biomedical image segmentation[C]. The 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234–241. doi: 10.1007/978-3-319-24574-4_28.
|
[21] |
SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. The 3rd International Conference on Learning Representations, San Diego, USA, 2015.
|
[22] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. The 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
|
[23] |
MA Ningning, ZHANG Xiangyu, ZHENG Haitao, et al. ShuffleNet v2: Practical guidelines for efficient CNN architecture design[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 122–138. doi: 10.1007/978-3-030-01264-9_8.
|
[24] |
TAN Mingxing and LE Q V. EfficientNetV2: Smaller models and faster training[C]. The 38th International Conference on Machine Learning, 2021: 10096–10106.
|