Citation: | ZHANG Yule, ZHOU Hao, HU Guoping, SHI Junpeng, ZHENG Guimei, SONG Yuwei. Sparse Array Design Methods via Redundancy Analysis of Coprime Array[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240348 |
[1] |
巩朋成, 王兆彬, 谭海明, 等. 杂波背景下基于交替方向乘子法的低截获频控阵MIMO雷达收发联合优化方法[J]. 电子与信息学报, 2021, 43(5): 1267–1274. doi: 10.11999/JEIT200445.
GONG Pengcheng, WANG Zhaobin, TAN Haiming, et al. Joint design of the transmit and receive beamforming via alternating direction method of multipliers for LPI of frequency diverse array MIMO radar in the presence of clutter[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1267–1274. doi: 10.11999/JEIT200445.
|
[2] |
SHI Junpeng, YANG Zai, and LIU Yongxiang. On parameter identifiability of diversity-smoothing-based MIMO radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(3): 1660–1675. doi: 10.1109/TAES.2021.3126370.
|
[3] |
GONG Pengcheng, SHAO Zhenhai, TU Guangpeng, et al. Transmit beampattern design based on convex optimization for MIMO radar systems[J]. Signal Processing, 2014, 94: 195–201. doi: 10.1016/j.sigpro.2013.06.021.
|
[4] |
MOFFET A. Minimum-redundancy linear arrays[J]. IEEE Transactions on Antennas and Propagation, 1968, 16(2): 172–175. doi: 10.1109/TAP.1968.1139138.
|
[5] |
PAL P and VAIDYANATHAN P P. Nested arrays: A novel approach to array processing with enhanced degrees of freedom[J]. IEEE Transactions on Signal Processing, 2010, 58(8): 4167–4181. doi: 10.1109/TSP.2010.2049264.
|
[6] |
VAIDYANATHAN P P and PAL P. Sparse sensing with co-prime samplers and arrays[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 573–586. doi: 10.1109/TSP.2010.2089682.
|
[7] |
SHI Junpeng, HU Guoping, ZHANG Xiaofei, et al. Generalized nested array: Optimization for degrees of freedom and mutual coupling[J]. IEEE Communications Letters, 2018, 22(6): 1208–1211. doi: 10.1109/LCOMM.2018.2821672.
|
[8] |
SHAALAN A M A, DU Jun, and TU Yanhui. Dilated nested arrays with more degrees of freedom (DOFs) and less mutual coupling—part I: The fundamental geometry[J]. IEEE Transactions on Signal Processing, 2022, 70: 2518–2531. doi: 10.1109/TSP.2022.3174451.
|
[9] |
ZHAO Pinjiao, WU Qisong, CHEN Zhengyu, et al. Generalized nested array configuration family for direction-of-arrival estimation[J]. IEEE Transactions on Vehicular Technology, 2023, 72(8): 10380–10392. doi: 10.1109/TVT.2023.3260196.
|
[10] |
PAL P and VAIDYANATHAN P P. Coprime sampling and the MUSIC algorithm[C]. 2011 Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE), Sedona, USA, 2011: 289–294. doi: 10.1109/DSP-SPE.2011.5739227.
|
[11] |
QIN Si, ZHANG Y D, and AMIN M G. Generalized coprime array configurations for direction-of-arrival estimation[J]. IEEE Transactions on Signal Processing, 2015, 63(6): 1377–1390. doi: 10.1109/TSP.2015.2393838.
|
[12] |
WANG Xiaomeng and WANG Xin. Hole identification and filling in k-times extended co-prime arrays for highly efficient DOA estimation[J]. IEEE Transactions on Signal Processing, 2019, 67(10): 2693–2706. doi: 10.1109/TSP.2019.2899292.
|
[13] |
SHI Junpeng, WEN Fangqing, LIU Yongxiang, et al. Enhanced and generalized coprime array for direction of arrival estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(2): 1327–1339. doi: 10.1109/TAES.2022.3200929.
|
[14] |
刘可, 朱泽政, 于军, 等. 基于互质阵列孔洞分析的稀疏阵列设计方法[J]. 电子与信息学报, 2022, 44(1): 372–379. doi: 10.11999/JEIT201024.
LIU Ke, ZHU Zezheng, YU Jun, et al. Sparse array design methods based on hole analysis of the coprime array[J]. Journal of Electronics & Information Technology, 2022, 44(1): 372–379. doi: 10.11999/JEIT201024.
|
[15] |
RAZA A, LIU Wei, and SHEN Qing. Thinned coprime array for second-order difference co-array generation with reduced mutual coupling[J]. IEEE Transactions on Signal Processing, 2019, 67(8): 2052–2065. doi: 10.1109/TSP.2019.2901380.
|
[16] |
ZHOU Chengwei, GU Yujie, FAN Xing, et al. Direction-of-arrival estimation for coprime array via virtual array interpolation[J]. IEEE Transactions on Signal Processing, 2018, 66(22): 5956–5971. doi: 10.1109/TSP.2018.2872012.
|
[17] |
FAN Qing, LIU Yu, YANG Tao, et al. Fast and accurate spectrum estimation via virtual coarray interpolation based on truncated nuclear norm regularization[J]. IEEE Signal Processing Letters, 2022, 29: 169–173. doi: 10.1109/LSP.2021.3130018.
|
[18] |
WANG Xinghua, CHEN Zhenhong, REN Shiwei, et al. DOA estimation based on the difference and sum coarray for coprime arrays[J]. Digital Signal Processing, 2017, 69: 22–31. doi: 10.1016/j.dsp.2017.06.013.
|
[19] |
ZHANG Yule, Shi Junpeng, ZHOU Hao, et al. Improved moving scheme for coprime arrays in direction of arrival estimation[J]. Digital Signal Processing, 2024, 149: 104514. doi: 10.1016/j.dsp.2024.104514.
|
[20] |
LIU Chunlin and VAIDYANATHAN P P. Robustness of difference coarrays of sparse arrays to sensor failures—part I: A theory motivated by coarray MUSIC[J]. IEEE Transactions on Signal Processing, 2019, 67(12): 3213–3226. doi: 10.1109/TSP.2019.2912882.
|
[21] |
AHMED A, ZHANG Y D, and ZHANG Jiankang. Coprime array design with minimum lag redundancy[C]. 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 2019: 4125–4129. doi: 10.1109/ICASSP.2019.8683315.
|