Citation: | ZHA Zhiyuan, YUAN Xin, ZHANG Jiachao, ZHU Ce. Low-Rank Regularized Joint Sparsity Modeling for Image Denoising[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240324 |
[1] |
OSHER S, BURGER M, GOLDFARB D, et al. An iterative regularization method for total variation-based image restoration[J]. Multiscale Modeling & Simulation, 2005, 4(2): 460–489. doi: 10.1137/040605412.
|
[2] |
AHARON M, ELAD M, and BRUCKSTEIN A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311–4322. doi: 10.1109/TSP.2006.881199.
|
[3] |
BUADES A, COLL B, and MOREL J M. A non-local algorithm for image denoising[C]. IEEE Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 60–65. doi: 10.1109/CVPR.2005.38.
|
[4] |
ELAD M, KAWAR B, and VAKSMAN G. Image denoising: The deep learning revolution and beyond—a survey paper[J]. SIAM Journal on Imaging Sciences, 2023, 16(3): 1594–1654. doi: 10.1137/23M1545859.
|
[5] |
赵冬冬, 叶逸飞, 陈朋, 等. 基于残差和注意力网络的声呐图像去噪方法[J]. 光电工程, 2023, 50(6): 230017. doi: 10.12086/oee.2023.230017.
ZHAO Dongdong, YE Yifei, CHEN Peng, et al. Sonar image denoising method based on residual and attention network[J]. Opto-Electronic Engineering, 2023, 50(6): 230017. doi: 10.12086/oee.2023.230017.
|
[6] |
周建新, 周凤祺. 基于改进协同量子粒子群的小波去噪分析研究[J]. 电光与控制, 2022, 29(1): 47–50. doi: 10.3969/j.issn.1671-637x.2022.01.010.
ZHOU Jianxin and ZHOU Fengqi. Wavelet denoising analysis based on cooperative quantum-behaved particle swarm optimization[J]. Electronics Optics & Control, 2022, 29(1): 47–50. doi: 10.3969/j.issn.1671-637x.2022.01.010.
|
[7] |
DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080–2095. doi: 10.1109/TIP.2007.901238.
|
[8] |
罗亮, 冯象初, 张选德, 等. 基于非局部双边随机投影低秩逼近图像去噪算法[J]. 电子与信息学报, 2013, 35(1): 99–105. doi: 10.3724/SP.J.1146.2012.00819.
LUO Liang, FENG Xiangchu, ZHANG Xuande, et al. An image denoising method based on non-local two-side random projection and low rank approximation[J]. Journal of Electronics & Information Technology, 2013, 35(1): 99–105. doi: 10.3724/SP.J.1146.2012.00819.
|
[9] |
ZHANG Jian, ZHAO Debin, and GAO Wen. Group-based sparse representation for image restoration[J]. IEEE Transactions on Image Processing, 2014, 23(8): 3336–3351. doi: 10.1109/TIP.2014.2323127.
|
[10] |
XU Jun, ZHANG Lei, ZUO Wangmeng, et al. Patch group based nonlocal self-similarity prior learning for image denoising[C]. IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 244–252. doi: 10.1109/ICCV.2015.36.
|
[11] |
ZHA Zhiyuan, YUAN Xin, WEN Bihan, et al. A benchmark for sparse coding: When group sparsity meets rank minimization[J]. IEEE Transactions on Image Processing, 2020, 29: 5094–5109. doi: 10.1109/TIP.2020.2972109.
|
[12] |
MAIRAL J, BACH F, PONCE J, et al. Non-local sparse models for image restoration[C]. 12th IEEE International Conference on Computer Vision, Kyoto, Japan, 2009: 2272–2279. doi: 10.1109/ICCV.2009.5459452.
|
[13] |
ZHANG Chengfang, ZHANG Ziyou, FENG Ziliang, et al. Joint sparse model with coupled dictionary for medical image fusion[J]. Biomedical Signal Processing and Control, 2023, 79: 104030. doi: 10.1016/j.bspc.2022.104030.
|
[14] |
LI Chunzhi and CHEN Xiaohua. A staged approach with structural sparsity for hyperspectral unmixing[J]. IEEE Sensors Journal, 2023, 23(12): 13248–13260. doi: 10.1109/JSEN.2023.3270885.
|
[15] |
ZHA Zhiyuan, WEN Bihan, YUAN Xin, et al. Low-rank regularized joint sparsity for image denoising[C]. IEEE International Conference on Image Processing, Anchorage, USA, 2021: 1644–1648. doi: 10.1109/ICIP42928.2021.9506726.
|
[16] |
ZHANG Kai, ZUO Wangmeng, CHEN Yunjin, et al. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142–3155. doi: 10.1109/TIP.2017.2662206.
|
[17] |
ZHANG Kai, ZUO Wangmeng, GU Shuhang, et al. Learning deep CNN denoiser prior for image restoration[C]. IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 2808–2817. doi: 10.1109/CVPR.2017.300.
|
[18] |
ZHANG Kai, ZUO Wangmeng, and ZHANG Lei. FFDNet: Toward a fast and flexible solution for CNN-based image denoising[J]. IEEE Transactions on Image Processing, 2018, 27(9): 4608–4622. doi: 10.1109/TIP.2018.2839891.
|
[19] |
CHEN Yunjin and PORK T. Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1256–1272. doi: 10.1109/TPAMI.2016.2596743.
|
[20] |
ZHAO Mingchao, WEN Youwei, NG M, et al. A nonlocal low rank model for Poisson noise removal[J]. Inverse Problems and Imaging, 2021, 15(3): 519–537. doi: 10.3934/ipi.2021003.
|
[21] |
ELAD M and YAVNEH I. A plurality of sparse representations is better than the sparsest one alone[J]. IEEE Transactions on Information Theory, 2009, 55(10): 4701–4714. doi: 10.1109/TIT.2009.2027565.
|
[22] |
DONG Weisheng, ZHANG Lei, SHI Guangming, et al. Nonlocally centralized sparse representation for image restoration[J]. IEEE Transactions on Image Processing, 2013, 22(4): 1620–1630. doi: 10.1109/TIP.2012.2235847.
|
[23] |
CHEN Yong, HE Wei, YOKOYA N, et al. Hyperspectral image restoration using weighted group sparsity-regularized low-rank tensor decomposition[J]. IEEE Transactions on Cybernetics, 2020, 50(8): 3556–3570. doi: 10.1109/TCYB.2019.2936042.
|
[24] |
CAI Jianfeng, CANDÈS E J, and SHEN Zuowei. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20(4): 1956–1982. doi: 10.1137/080738970.
|
[25] |
KUMAR G P and SAHAY R R. Low rank Poisson denoising (LRPD): A low rank approach using split Bregman algorithm for Poisson noise removal from images[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, USA, 2019: 1907–1916. doi: 10.1109/CVPRW.2019.00242.
|
[26] |
BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends® in Machine Learning, 2011, 3(1): 1–122. doi: 10.1561/2200000016.
|
[27] |
WEN Youwei and CHAN R H. Parameter selection for total-variation-based image restoration using discrepancy principle[J]. IEEE Transactions on Image Processing, 2012, 21(4): 1770–1781. doi: 10.1109/TIP.2011.2181401.
|
[28] |
ZORAN D and WEISS Y. From learning models of natural image patches to whole image restoration[C]. IEEE International Conference on Computer Vision, Barcelona, Spain, 2011: 479–486. doi: 10.1109/ICCV.2011.6126278.
|
[29] |
TALEBI H and MILANFAR P. Global image denoising[J]. IEEE Transactions on Image Processing, 2014, 23(2): 755–768. doi: 10.1109/TIP.2013.2293425.
|
[30] |
LUO Enming, CHAN S H, and NGUYEN T Q. Adaptive image denoising by mixture adaptation[J]. IEEE Transactions on Image Processing, 2016, 25(10): 4489–4503. doi: 10.1109/TIP.2016.2590318.
|
[31] |
PANG Jiahao and CHEUNG G. Graph Laplacian regularization for image denoising: Analysis in the continuous domain[J]. IEEE Transactions on Image Processing, 2017, 26(4): 1770–1785. doi: 10.1109/TIP.2017.2651400.
|
[32] |
LIU Haosen and TAN Shan. Image regularizations based on the sparsity of corner points[J]. IEEE Transactions on Image Processing, 2019, 28(1): 72–87. doi: 10.1109/TIP.2018.2862357.
|
[33] |
HUANG Jiabin, SINGH A, and AHUJA N. Single image super-resolution from transformed self-exemplars[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 5197–5206. doi: 10.1109/CVPR.2015.7299156.
|
[34] |
AZZARI L and FOI A. Variance stabilization for noisy+estimate combination in iterative Poisson denoising[J]. IEEE Signal Processing Letters, 2016, 23(8): 1086–1090. doi: 10.1109/LSP.2016.2580600.
|
[35] |
LEHTINEN J, MUNKBERG J, HASSELGREN J, et al. Noise2Noise: Learning image restoration without clean data[C]. Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 2018: 2965–2974.
|
[36] |
MITTAL A, MOORTHY A K, and BOVIK A C. No-reference image quality assessment in the spatial domain[J]. IEEE Transactions on Image Processing, 2012, 21(12): 4695–4708. doi: 10.1109/TIP.2012.2214050.
|