Citation: | ZHANG Hongying, FAN Shiyu, LUO Qian, ZHANG Tao. Visible-Infrared Person Re-identification Combining Visual-Textual Matching and Graph Embedding[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3662-3671. doi: 10.11999/JEIT240318 |
[1] |
张永飞, 杨航远, 张雨佳, 等. 行人再识别技术研究进展[J]. 中国图象图形学报, 2023, 28(6): 1829–1862. doi: 10.11834/jig.230022.
ZHANG Yongfei, YANG Hangyuan, ZHANG Yujia, et al. Recent progress in person re-ID[J]. Journal of Image and Graphics, 2023, 28(6): 1829–1862. doi: 10.11834/jig.230022.
|
[2] |
王粉花, 赵波, 黄超, 等. 基于多尺度和注意力融合学习的行人重识别[J]. 电子与信息学报, 2020, 42(12): 3045–3052. doi: 10.11999/JEIT190998.
WANG Fenhua, ZHAO Bo, HUANG Chao, et al. Person re-identification based on multi-scale network attention fusion[J]. Journal of Electronics & Information Technology, 2020, 42(12): 3045–3052. doi: 10.11999/JEIT190998.
|
[3] |
LI Shuang, LI Fan, LI Jinxing, et al. Logical relation inference and multiview information interaction for domain adaptation person re-identification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023. doi: 10.1109/tnnls.2023.3281504.
|
[4] |
CHOI S, LEE S, KIM Y, et al. Hi-CMD: Hierarchical cross-modality disentanglement for visible-infrared person re-identification[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 10254–10263. doi: 10.1109/cvpr42600.2020.01027.
|
[5] |
HUANG Nianchang, LIU Jianan, LUO Yongjiang, et al. Exploring modality-shared appearance features and modality-invariant relation features for cross-modality person re-identification[J]. Pattern Recognition, 2023, 135: 109145. doi: 10.1016/j.patcog.2022.109145.
|
[6] |
ZHANG Yukang and WANG Hanzi. Diverse embedding expansion network and low-light cross-modality benchmark for visible-infrared person re-identification[C]. The 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 2153–2162. doi: 10.1109/CVPR52729.2023.00214.
|
[7] |
DAI Pingyang, JI Rongrong, WANG Haibin, et al. Cross-modality person re-identification with generative adversarial training[C]. The Twenty-Seventh International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 2018: 677–683.
|
[8] |
WANG Guan’an, ZHANG Tianzhu, CHENG Jian, et al. RGB-infrared cross-modality person re-identification via joint pixel and feature alignment[C]. The 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 2019: 3622–3631. doi: 10.1109/ICCV.2019.00372.
|
[9] |
寇旗旗, 黄绩, 程德强, 等. 基于语义融合的域内相似性分组行人重识别[J]. 通信学报, 2022, 43(7): 153–162. doi: 10.11959/j.issn.1000-436x.2022136.
KOU Qiqi, HUANG Ji, CHENG Deqiang, et al. Person re-identification with intra-domain similarity grouping based on semantic fusion[J]. Journal on Communications, 2022, 43(7): 153–162. doi: 10.11959/j.issn.1000-436x.2022136.
|
[10] |
LI Siyuan, SUN Li, and LI Qingli. CLIP-ReID: Exploiting vision-language model for image re-identification without concrete text labels[C]. The 37th AAAI Conference on Artificial Intelligence, Washington, USA, 2023: 1405–1413. doi: 10.1609/aaai.v37i1.25225.
|
[11] |
MORSING L H, SHEIKH-OMAR O A, and IOSIFIDIS A. Supervised domain adaptation using graph embedding[C]. 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 2021: 7841–7847. doi: 10.1109/icpr48806.2021.9412422.
|
[12] |
YE Mang, SHEN Jianbing, LIN Gaojie, et al. Deep learning for person re-identification: A survey and outlook[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(6): 2872–2893. doi: 10.1109/TPAMI.2021.3054775.
|
[13] |
WU Ancong, ZHENG Weishi, YU Hongxing, et al. RGB-infrared cross-modality person re-identification[C]. The 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 5390–5399. doi: 10.1109/iccv.2017.575.
|
[14] |
NGUYEN D T, HONG H G, KIM K W, et al. Person recognition system based on a combination of body images from visible light and thermal cameras[J]. Sensors, 2017, 17(3): 605. doi: 10.3390/s17030605.
|
[15] |
YE Mang, LAN Xiangyuan, LI Jiawei, et al. Hierarchical discriminative learning for visible thermal person re-identification[C]. The 32nd AAAI Conference on Artificial Intelligence, New Orleans, USA, 2018: 7501–7508. doi: 10.1609/aaai.v32i1.12293.
|
[16] |
YE Mang, WANG Zheng, LAN Xiangyuan, et al. Visible thermal person re-identification via dual-constrained top-ranking[C]. The Twenty-Seventh International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 2018: 1092–1099.
|
[17] |
YE Mang, LAN Xiangyuan, WANG Zheng, et al. Bi-directional center-constrained top-ranking for visible thermal person re-identification[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 407–419. doi: 10.1109/tifs.2019.2921454.
|
[18] |
XIANG Xuezhi, LV Ning, YU Zeting, et al. Cross-modality person re-identification based on dual-path multi-branch network[J]. IEEE Sensors Journal, 2019, 19(23): 11706–11713. doi: 10.1109/JSEN.2019.2936916.
|
[19] |
BASARAN E, GÖKMEN M, and KAMASAK M E. An efficient framework for visible–infrared cross modality person re-identification[J]. Signal Processing: Image Communication, 2020, 87: 115933. doi: 10.1016/j.image.2020.115933.
|
[20] |
LI Diangang, WEI Xing, HONG Xiaopeng, et al. Infrared-visible cross-modal person re-identification with an x modality[C]. The 34th AAAI Conference on Artificial Intelligence, New York, USA, 2020: 4610–4617. doi: 10.1609/aaai.v34i04.5891.
|
[21] |
YE Mang, SHEN Jianbing, CRANDALL D J, et al. Dynamic dual-attentive aggregation learning for visible-infrared person re-identification[C]. The 16th European Conference on Computer Vision, Glasgow, UK, 2020: 229–247. doi: 10.1007/978-3-030-58520-4_14.
|
[22] |
LIU Haojie, MA Shun, XIA Daoxun, et al. SFANet: A spectrum-aware feature augmentation network for visible-infrared person reidentification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(4): 1958–1971. doi: 10.1109/tnnls.2021.3105702.
|
[23] |
HUANG Zhipeng, LIU Jiawei, LI Liang, et al. Modality-adaptive mixup and invariant decomposition for RGB-infrared person re-identification[C]. The 36th AAAI Conference on Artificial Intelligence, 2022: 1034–1042. doi: 10.1609/aaai.v36i1.19987.
|
[24] |
FU Chaoyou, HU Yibo, WU Xiang, et al. CM-NAS: Cross-modality neural architecture search for visible-infrared person re-identification[C]. The 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 11803–11812. doi: 10.1109/ICCV48922.2021.01161.
|
[25] |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[C]. 9th International Conference on Learning Representations, 2021.
|