Advanced Search
Volume 46 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
SHEN Bingsheng, ZHOU Zhengchun, YANG Yang, FAN Pingzhi. Constructions of Binary Complementary Sequence Set Based on Base Sequences[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3757-3762. doi: 10.11999/JEIT240309
Citation: SHEN Bingsheng, ZHOU Zhengchun, YANG Yang, FAN Pingzhi. Constructions of Binary Complementary Sequence Set Based on Base Sequences[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3757-3762. doi: 10.11999/JEIT240309

Constructions of Binary Complementary Sequence Set Based on Base Sequences

doi: 10.11999/JEIT240309
Funds:  The National Natural Science Foundation of China (12401695, U23A20274, 62171389), Sichuan Natural Science Foundation Innovation Research Group (2024NSFTD0015), The Fundamental Research Funds for the Central Universities (2682024CX027)
  • Received Date: 2024-04-22
  • Rev Recd Date: 2024-08-28
  • Available Online: 2024-09-01
  • Publish Date: 2024-09-26
  • Complementary Sequence Sets (CSS) have ideal aperiodic auto-correlation functions and are widely used in the field of communication and sensing. In order to solve the problem of limited length of complementary sequence sets, two new constructions of binary complementary sequence sets are proposed using concatenation operator and interleaving operator, with the base sequence as the initial sequence. The proposed construction fills the gap in the length of the binary complementary sequence set and solves the public problem proposed by Adhikary and Majhi.
  • loading
  • [1]
    GOLAY M. Complementary series[J]. IRE Transactions on Information Theory, 1961, 7(2): 82–87. doi: 10.1109/TIT.1961.1057620.
    [2]
    TSENG C C and LIU C. Complementary sets of sequences[J]. IEEE Transactions on Information Theory, 1972, 18(5): 644–652. doi: 10.1109/TIT.1972.1054860.
    [3]
    LI Yuke, ZHOU Yongxing, LI Xueru, et al. Unimodular complete complementary sequence with optimal trade-off between auto- and cross-ambiguity functions for MIMO radars[J]. IEEE Transactions on Intelligent Vehicles, 2024. doi: 10.1109/TIV.2024.3384435.
    [4]
    ZHU Jiahua, SONG Yongping, JIANG Nan, et al. Enhanced Doppler resolution and sidelobe suppression performance for golay complementary waveforms[J]. Remote Sensing, 2023, 15(9): 2452. doi: 10.3390/rs15092452.
    [5]
    ZHOU Yajing, ZHOU Zhengchun, LIU Zilong, et al. Symmetrical Z-Complementary code sets for optimal training in generalized spatial modulation[J]. Signal Processing, 2023, 208: 108990. doi: 10.1016/j.sigpro.2023.108990.
    [6]
    MEN Xinyu, LIU Tao, LI Yubo, et al. Constructions of 2-D Golay complementary array sets with flexible array sizes for omnidirectional precoding in massive MIMO[J]. IEEE Communications Letters, 2023, 27(5): 1302–1306. doi: 10.1109/LCOMM.2023.3263860.
    [7]
    赵羚岚, 杨奕冉, 刘喜庆, 等. 基于完全互补码扩频的通信雷达一体化系统[J]. 无线电通信技术, 2023, 49(1): 118–125. doi: 10.3969/j.issn.1003-3114.2023.01.014.

    ZHAO Linglan, YANG Yiran, LIU Xiqing, et al. Integrated communication and radar system based on complete complementary code spread spectrum[J]. Radio Communications Technology, 2023, 49(1): 118–125. doi: 10.3969/j.issn.1003-3114.2023.01.014.
    [8]
    LIU Kaiqiang, ZHOU Zhengchun, ADHIKARY A R, et al. New sets of non-orthogonal spreading sequences with low correlation and low PAPR using extended Boolean functions[J]. Designs, Codes and Cryptography, 2023, 91(10): 3115–3139. doi: 10.1007/s10623-023-01247-z.
    [9]
    李玉博, 王亚会, 于丽欣, 等. 免调度非正交多址接入上行链路的非2幂次长度二元扩频序列[J]. 电子与信息学报, 2022, 44(4): 1402–1411. doi: 10.11999/JEIT210293.

    LI Yubo, WANG Yahui, YU Lixin, et al. Binary spreading sequences of lengths non-power-of-two for uplink grant-free non-orthogonal multiple access[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1402–1411. doi: 10.11999/JEIT210293.
    [10]
    PATERSON K G. Generalized Reed-Muller codes and power control in OFDM modulation[J]. IEEE Transactions on Information Theory, 2000, 46(1): 104–120. doi: 10.1109/18.817512.
    [11]
    CHEN Chaoyu. Complementary sets of non-power-of-two length for peak-to-average power ratio reduction in OFDM[J]. IEEE Transactions on Information Theory, 2016, 64(12): 7538–7545. doi: 10.1109/TIT.2016.2613994.
    [12]
    DAVIS J A and JEDWAB J. Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes[J]. IEEE Transactions on Information Theory, 1999, 45(7): 2397–2417. doi: 10.1109/18.796380.
    [13]
    ADHIKARY A R and MAJHI S. New constructions of complementary sets of sequences of lengths non-power-of-two[J]. IEEE Communications Letters, 2019, 23(7): 1119–1122. doi: 10.1109/LCOMM.2019.2913382.
    [14]
    SHEN Bingsheng, YANG Yang, and ZHOU Zhengchun. A construction of binary Golay complementary sets based on even-shift complementary pairs[J]. IEEE Access, 2020, 8: 29882–29890. doi: 10.1109/ACCESS.2020.2972598.
    [15]
    WANG Gaoxiang, ADHIKARY A R, ZHOU Zhengchun, et al. Generalized constructions of complementary sets of sequences of lengths non-power-of-two[J]. IEEE Signal Processing Letters, 2020, 27: 136–140. doi: 10.1109/LSP.2019.2960155.
    [16]
    SHEN Bingsheng, YANG Yang, FAN Pingzhi, et al. New Z-complementary/complementary sequence sets with non-power-of-two length and low PAPR[J]. Cryptography and Communications, 2022, 14(4): 817–832. doi: 10.1007/s12095-021-00550-7.
    [17]
    SHEN Bingsheng, MENG Hua, YANG Yang, et al. New constructions of Z-complementary code sets and mutually orthogonal complementary sequence sets[J]. Designs, Codes and Cryptography, 2023, 91(2): 353–371. doi: 10.1007/s10623-022-01112-5.
    [18]
    COHEN G, RUBIE D, SEBERRY J, et al. A survey of base sequences, disjoint complementary sequences and $ O D(4 t ; t, t, t, t) $[J]. JCMCC, 1989, 5: 69–104.
    [19]
    KOUKOUVINOS C, KOUNIAS S, and SOTIRAKOGLOU K. On base and Turyn sequences[J]. Mathematics of Computation, 1990, 55(192): 825–837. doi: 10.1090/S0025-5718-1990-1023764-7.
    [20]
    KOUKOUVINOS C, KOUNIAS S, SEBERRY J, et al. Multiplication of sequences with zero autocorrelation[J]. Australasian Journal of Combinatorics, 1994, 10: 5–15.
    [21]
    EDMONDSON G M, SEBERRY J, and ANDERSON M R. On the existence of Turyn sequences of length less than 43[J]. Mathematics of Computation, 1994, 62(205): 351–362. doi: 10.2307/2153414.
    [22]
    ĐOKOVIĆ D Ž. On the base sequence conjecture[J]. Discrete Mathematics, 2010, 310(13/14): 1956–1964. doi: 10.1016/j.disc.2010.03.007.
    [23]
    TURYN R J. Hadamard matrices, Baumert-Hall units, four-symbol sequences, pulse compression, and surface wave encodings[J]. Journal of Combinatorial Theory, Series A, 1974, 16(3): 313–333. doi: 10.1016/0097-3165(74)90056-9.
    [24]
    BEST D, ÐOKOVIĆ D Ž, KHARAGHANI H, et al. Turyn-type sequences: Classification, enumeration, and construction[J]. Journal of Combinatorial Designs, 2013, 21(1): 24–35. doi: 10.1002/jcd.21318.
    [25]
    LONDON S. Constructing new Turyn type sequences, T-sequences and Hadamard matrices[D]. [Ph. D. dissertation], University of Illinois at Chicago, 2013.
    [26]
    PAI Chengyu, LIN Y J, and CHEN Chaoyu. Optimal and almost-optimal Golay-ZCZ sequence sets with bounded PAPRs[J]. IEEE Transactions on Communications, 2023, 71(2): 728–740. doi: 10.1109/TCOMM.2022.3228932.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(2)

    Article Metrics

    Article views (112) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return