Citation: | AI Fei, SU Xiaojing, WEI Yayi. Research Progress of Inverse Lithography Technology[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240308 |
[1] |
韦亚一, 粟雅娟, 刘艳松. 先导光刻中的光学邻近效应修正[J]. 微纳电子技术, 2014, 51(3): 186–193. doi: 10.13250/j.cnki.wndz.2014.03.009.
WEI Yayi, SU Yajuan, and LIU Yansong. Optical proximity correction in the advanced photolithography[J]. Micronanoelectronic Technology, 2014, 51(3): 186–193. doi: 10.13250/j.cnki.wndz.2014.03.009.
|
[2] |
LIU Yong and ZAKHOR A. Optimal binary image design for optical lithography[C]. SPIE 1264, Optical/Laser Microlithography III, San Jose, USA, 1990. doi: 10.1117/12.20216.
|
[3] |
LIU Yong and ZAKHOR A. Binary and phase shifting mask design for optical lithography[J]. IEEE Transactions on Semiconductor Manufacturing, 1992, 5(2): 138–152. doi: 10.1109/66.136275.
|
[4] |
ROSENBLUTH A E, BUKOFSKY S J, FONSECA C A, et al. Optimum mask and source patterns to print a given shape[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2002, 1(1). doi: 10.1117/1.1448500.
|
[5] |
FUHNER T and ERDMANN A. Improved mask and source representations for automatic optimization of lithographic process conditions using a genetic algorithm[C]. SPIE 5754, Optical Microlithography XVIII, San Jose, USA, 2005. doi: 10.1117/12.599410.
|
[6] |
PANG Linyong, SHAMMA N, RISSMAN P, et al. Laser and e-beam mask-to-silicon with inverse lithography technology (ILT)[C]. SPIE 5992, 25th Annual BACUS Symposium on Photomask Technology, Monterey, USA, 2005: 599221. doi: 10.1117/12.632738.
|
[7] |
TOLANI V, PENG Danping, HE Lin, et al. Lithographic plane review (LPR) for sub-32nm mask defect disposition[C]. SPIE 7823, Photomask Technology 2010, Monterey, USA, 2010: 78232G. doi: 10.1117/12.864284.
|
[8] |
SCHENKER R, BOLLEPALLI S, HU Bin, et al. Integration of pixelated phase masks for full-chip random logic layers[C]. SPIE 6924, Optical Microlithography XXI, San Jose, USA, 2008: 69240I. doi: 10.1117/12.771677.
|
[9] |
TORUNOGLU I, KARAKAS A, ELSEN E, et al. OPC on a single desktop: A GPU-based OPC and verification tool for fabs and designers[C]. SPIE 7641, Design for Manufacturability through Design-Process Integration IV, San Jose, USA, 2010: 764114. doi: 10.1117/12.846636.
|
[10] |
TORUNOGLU I, KARAKAS A, ELSEN E, et al. A GPU-based full-chip inverse lithography solution for random patterns[C]. SPIE 7641, Design for Manufacturability through Design-Process Integration IV, San Jose, USA, 2010: 764115. doi: 10.1117/12.846638.
|
[11] |
POONAWALA A, BORODOVSKY Y, and MILANFAR P. ILT for double exposure lithography with conventional and novel materials[C]. SPIE 6520 SPIE, Optical Microlithography XX, San Jose, USA, 2007: 65202Q. doi: 10.1117/12.712382.
|
[12] |
YANG Yiwei, SHI Zheng, and SHEN Shanhu. Seamless-merging-oriented parallel inverse lithography technology[J]. Journal of Semiconductors, 2009, 30(10): 106002. doi: 10.1088/1674-4926/30/10/106002.
|
[13] |
ZHANG Jinyu, XIONG Wei, WANG Yan, et al. A highly efficient optimization algorithm for pixel manipulation in inverse lithography technique[C]. 2008 IEEE/ACM International Conference on Computer-Aided Design, San Jose, USA, 2008: 480–487. doi: 10.1109/ICCAD.2008.4681618.
|
[14] |
ZHANG Jinyu, DENG Yangdong, XIONG Wei, et al. GPU-accelerated inverse lithography technique[C]. SPIE 7379, Photomask and Next-Generation Lithography Mask Technology XVI, Yokohama, Japan, 2009: 73790Z. doi: 10.1117/12.824276.
|
[15] |
LAM E Y and WONG A K K. Computation lithography: Virtual reality and virtual virtuality[J]. Optics Express, 2009, 17(15): 12259–12268. doi: 10.1364/OE.17.012259.
|
[16] |
LAM E. Regularization in inverse lithography: Enhancing manufacturability and robustness to process variations[J]. ECS Transactions, 2010, 27(1): 427–432. doi: 10.1149/1.3360655.
|
[17] |
JIA Ningning and LAM E Y. Machine learning for inverse lithography: Using stochastic gradient descent for robust photomask synthesis[J]. Journal of Optics, 2010, 12(4): 045601. doi: 10.1088/2040-8978/12/4/045601.
|
[18] |
SUN Shuyuan, YANG Fan, YU Bei, et al. Efficient ILT via multi-level lithography simulation[C]. 2023 60th ACM/IEEE Design Automation Conference (DAC), San Francisco, USA, 2023: 1–6. doi: 10.1109/DAC56929.2023.10247704.
|
[19] |
CIOU W L, HU T, TSAI Y Y, et al. SRAF placement with generative adversarial network[C]. SPIE 11613, Optical Microlithography XXXIV, 2021: 1161305. doi: 10.1117/12.2581334.
|
[20] |
XU Hui, QI Pan, TANG Fuxin, et al. SwinT-ILT: Swin transformer embedding end-to-end mask optimization model[J]. Journal of Micro/Nanopatterning, Materials, and Metrology, 2024, 23(1): 013201. doi: 10.1117/1.JMM.23.1.013201.
|
[21] |
CELEPCIKAY F T, LIAO Chuncheng, HUANG T, et al. Synthesizing ILT MB-SRAF using machine learning[C]. SPIE 12954, DTCO and Computational Patterning III, San Jose, USA, 2024: 129540H. doi: 10.1117/12.3010902.
|
[22] |
BORK I, BUCK P, MISHRA K, et al. Curvilinear mask process correction: Status quo and outlook[C]. SPIE 12472, 37th European Mask and Lithography Conference, Leuven, Belgium, 2022: 124720S. doi: 10.1117/12.2640001.
|
[23] |
HOOKER K, XIAO Guangming, TANG Yupo, et al. Curvilinear mask solutions for full-chip EUV lithography[C]. SPIE 12054, Novel Patterning Technologies 2022, San Jose, USA, 2022: 1205407. doi: 10.1117/12.2618392.
|
[24] |
PANG Linyong and FUJIMURA A. Why the mask world is moving to curvilinear[C]. SPIE 12054, DTCO and Computational Patterning III, San Jose, USA, 2024: 1295416. doi: 10.1117/12.3014640.
|
[25] |
WEI Pengzhi, LI Yanqiu, LI Zhaoxuan, et al. Implicit function characterization of the curvilinear mask to realize parametric optical proximity correction with a neighborhood parallel tabu search[J]. Applied Optics, 2023, 62(18): 4848–4859. doi: 10.1364/AO.490229.
|
[26] |
DIGAUM P, KAJIWARA K, KOSA N, et al. Affordable optical proximity correction runtime for EUV curvilinear mask tape-out flow[C]. SPIE 12954, DTCO and Computational Patterning III, San Jose, USA, 2024: 129540T. doi: 10.1117/12.3009981.
|
[27] |
ZIMMERMANN R, ORBE L, KÜCHLER B, et al. Mask synthesis for silicon photonics devices[C].SPIE 12148, Integrated Photonics Platforms II, Strasbourg, France, 2022: 1214809. doi: 10.1117/12.2620724.
|
[28] |
SHARMA R, ZUO M, BORK I, et al. A method for calibrating a curvature-based pre-bias model for advanced mask process correction applications[C]. SPIE 12293, Photomask Technology 2022, Monterey, USA, 2022: 1229309. doi: 10.1117/12.2641760.
|
[29] |
XU Yan, HOU Jiechang, ZEGGAOUI N, et al. A study of ILT-based curvilinear SRAF with a constant width[C]. SPIE 12293, Photomask Technology 2022, Monterey, USA, 2022: 1229306. doi: 10.1117/12.2642989.
|
[30] |
HOOKER K, XIAO Guangming, TANG Yupo, et al. Enhancing mask synthesis for curvilinear masks in full-chip extreme ultraviolet lithography[J]. Journal of Micro/Nanopatterning, Materials, and Metrology, 2023, 22(4): 041606. doi: 10.1117/1.JMM.22.4.041606.
|
[31] |
LI Fu, MU Yu, FAN Jingjing, et al. Balancing mask manufacturability and image quality with inverse lithography: a study on variable fracture sizes[C]. SPIE 12953, Optical and EUV Nanolithography XXXVII, San Jose, USA, 2024: 1295310. doi: 10.1117/12.3010071.
|
[32] |
KIM R H, OAK A, SHERAZI Y, et al. Manufacturing-friendly curvilinear standard cell design[C]. SPIE 12954, DTCO and Computational Patterning III, San Jose, USA, 2024: 1295405. doi: 10.1117/12.3009888.
|
[33] |
SUNDARAMURTHY A. Progress in resolving mask making challenges to enable HVM curvilinear patterning[C]. SPIE PC12956, Novel Patterning Technologies 2024, San Jose, USA, 2024: PC1295608. doi: 10.1117/12.3014935.
|
[34] |
CECIL T, PENG Danping, ABRAMS D, et al. Advances in inverse lithography[J]. ACS Photonics, 2023, 10(4): 910–918. doi: 10.1021/acsphotonics.2c01026.
|
[35] |
WANG Jiahui, GALLAGHER E, TRIVKOVIC D, et al. EUV lithography: LER design, mask, and wafer impact[C]. SPIE 12953, Optical and EUV Nanolithography XXXVII, San Jose, USA, 2024: 129530A. doi: 10.1117/12.3011038.
|
[36] |
FANG P H and YU Peichen. Tackling data inconsistency and runtime issues in inverse lithography technology (ILT) with comparative convergence study[C]. Proceedings of SPIE 12954, DTCO and Computational Patterning III, San Jose, USA, 2024: 129541E. doi: 10.1117/12.3007748.
|
[37] |
韦亚一, 粟雅娟, 董立松, 等. 计算光刻与版图优化[M]. 北京: 电子工业出版社, 2020: 107–123.
WEI Yayi, SU Yajuan, DONG Lisong, et al. Computational Lithography and Layout Optimization[M]. Beijing: Publishing House of Electronics Industry, 2020: 107–123.
|
[38] |
韦亚一. 超大规模集成电路先进光刻理论与应用[M]. 北京: 科学出版, 2016: 343–368.
|
[39] |
WEI Yayi and BRAINARD R L. Advanced Processes for 193-nm Immersion Lithography[M]. Bellingham: SPIE, 2009: 336.
|
[40] |
OSHER S and SETHIAN J A. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations[J]. Journal of Computational Physics, 1988, 79(1): 12–49. doi: 10.1016/0021-9991(88)90002-2.
|
[41] |
PANG Linyong, HU P, PENG Danping, et al. Source mask optimization (SMO) at full chip scale using inverse lithography technology (ILT) based on level set methods[C]. SPIE 7520, Lithography Asia 2009, Taipei, China, 2009: 75200X. doi: 10.1117/12.843578.
|
[42] |
HO J, WANG Yan, WU Xin, et al. Real-world impact of inverse lithography technology[C]. SPIE 5992, 25th Annual BACUS Symposium on Photomask Technology, Monterey, USA, 2005: 59921Z. doi: 10.1117/12.632211.
|
[43] |
MARTIN P M, PROGLER C J, XIAO G, et al. Manufacturability study of masks created by inverse lithography technology (ILT)[C]. SPIE 5992, 25th Annual BACUS Symposium on Photomask Technology, Monterey, USA, 2005: 599235. doi: 10.1117/12.633200.
|
[44] |
LIN B, SHIEH M, SUN Jiewei, et al. Inverse lithography technology at chip scale[C]. SPIE 6154, Optical Microlithography XIX, San Jose, USA, 2006: 615414. doi: 10.1117/12.656827.
|
[45] |
HUNG C Y, ZHANG Bin, GUO E, et al. Pushing the lithography limit: Applying inverse lithography technology (ILT) at the 65nm generation[C]. SPIE 6154, Optical Microlithography XIX, San Jose, USA, 2006: 61541M. doi: 10.1117/12.655728.
|
[46] |
ABRAMS D S and PANG Linyong. Fast inverse lithography technology[C]. SPIE 6154, Optical Microlithography XIX, San Jose, USA, 2006: 61541J. doi: 10.1117/12.658876.
|
[47] |
DAM T, TOLANI V, HU P, et al. Source-mask optimization (SMO): From theory to practice[C]. SPIE 7640, Optical Microlithography XXIII, San Jose, USA, 2010: 764028. doi: 10.1117/12.848257.
|
[48] |
PANG Linyong, LIU Yong, and ABRAMS D. Inverse lithography technology (ILT): What is the impact to the photomask industry?[C]. SPIE 6283, Photomask and Next-Generation Lithography Mask Technology XIII, Yokohama, Japan, 2006: 62830X. doi: 10.1117/12.681857.
|
[49] |
PANG Linyong, PENG Danping, HU P, et al. Optimization from design rules, source and mask, to full chip with a single computational lithography framework: Level-set-methods-based inverse lithography technology (ILT)[C]. SPIE SPIE 7640, Optical Microlithography XXIII, San Jose, USA, 2010: 76400O. doi: 10.1117/12.848145.
|
[50] |
PANG Linyong, CECIL T, DAM T, et al. Validation of inverse lithography technology (ILT) and its adaptive SRAF at advanced technology nodes[C]. SPIE 6924, Optical Microlithography XXI, San Jose, USA, 2008: 69240T. doi: 10.1117/12.775084.
|
[51] |
SINGH V, HU Bin, TOH K, et al. Making a trillion pixels dance[C]. SPIE 6924, Optical Microlithography XXI, San Jose, USA, 2008: 69240S. doi: 10.1117/12.773248.
|
[52] |
PANG Linyong, RUSSELL E V, BAGGENSTOSS B, et al. Study of mask and wafer co-design that utilizes a new extreme SIMD approach to computing in memory manufacturing: Full-chip curvilinear ILT in a day[C]. Proceedings of SPIE 11148, Photomask Technology, Monterey, USA, 2019: 111480U. doi: 10.1117/12.2534629.
|
[53] |
ZHENG Xianqiang, MA Xu, ZHANG Shengen, et al. Study of inverse lithography approaches based on deep learning[J]. Journal of Microelectronic Manufacturing, 2020, 3(3): 20030301. doi: 10.33079/jomm.20030301.
|
[54] |
CAO Qingchen, XU Peng, SUN Song, et al. Curvilinear mask optimization with refined generative adversarial nets[J]. Journal of Micro/Nanopatterning, Materials, and Metrology, 2023, 22(1): 013201. doi: 10.1117/1.JMM.22.1.013201.
|
[55] |
MOREAU M, HENRY J B, and BONNET S. A deep learning workflow to generate free-form masks for grayscale lithography[C]. SPIE 12954, DTCO and Computational Patterning III, San Jose, USA, 2024: 129540Y. doi: 10.1117/12.3009759.
|
[56] |
CHIU W, HU T, HSUAN T, et al. Enhancing lithography printability through deep generative models for layout re-targeting[C]. SPIE 12954, DTCO and Computational Patterning III, San Jose, USA, 2024: 129540Q. doi: 10.1117/12.3008955.
|
[57] |
ZHENG Su, YANG Haoyu, ZHU Binwu, et al. LithoBench: Benchmarking AI computational lithography for semiconductor manufacturing[C]. The 37th Conference on Neural Information Processing Systems, New Orlean, USA, 2023.
|
[58] |
LAN Song, LIU Jun, WANG Yumin, et al. Deep learning assisted fast mask optimization[C]. SPIE 10587, Optical Microlithography XXXI, San Jose, USA, 2018: 105870H. doi: 10.1117/12.2297514.
|
[59] |
WOLDEAMANUAL D S, ERDMANN A, and MAIER A. Application of deep learning algorithms for Lithographic mask characterization[C]. SPIE 10694, Computational Optics II, Frankfurt, Germany, 2018: 1069408. doi: 10.1117/12.2312478.
|
[60] |
SIM W, LEE K, YANG Dingdong, et al. Automatic correction of lithography hotspots with a deep generative model[C]. SPIE 10961, Optical Microlithography XXXII, San Jose, USA, 2019: 1096105. doi: 10.1117/12.2514884.
|
[61] |
TANABE H, JINGUJI A, and TAKAHASHI A. Evaluation of convolutional neural network for fast extreme ultraviolet lithography simulation using imec 3 nm node mask patterns[J]. Journal of Micro-Nanopatterning Materials And Metrology, 2023, 22(2): 024201. doi: 10.1117/1.JMM.22.2.024201.
|
[62] |
CHEN Guojin, YU Ziyang, LIU Hongduo, et al. DevelSet: Deep neural level set for instant mask optimization[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023, 42(12): 5020–5033. doi: 10.1109/TCAD.2023.3286262.
|
[63] |
CHEN Zuoxian and SHI Zheng. An efficient inverse lithography technology method based on detail-enhanced Pix2Pix network[C]. SPIE 13081, Third International Conference on Advanced Manufacturing Technology and Electronic Information (AMTEI 2023), Tianjin, China, 2024: 130810D. doi: 10.1117/12.3025959.
|
[64] |
ZHU Binwu, ZHENG Su, YU Ziyang, et al. L2O-ILT: Learning to optimize inverse lithography techniques[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2024, 43(3): 944–955. doi: 10.1109/TCAD.2023.3323164.
|
[65] |
AKKIRAJU N and TORUNOGLU I. A machine learning approach to inverse lithography[C]. SPIE 12052, DTCO and Computational Patterning, San Jose, USA, 2022: 120520W. doi: 10.1117/12.2613163.
|
[66] |
MA Xu, ZHAO Qile, ZHANG Hao, et al. Model-driven convolution neural network for inverse lithography[J]. Optics Express, 2018, 26(25): 32565–32584. doi: 10.1364/OE.26.032565.
|
[67] |
YUAN Pengpeng, XU Peng, and WEI Yayi. Optical proximity correction with the conditional Wasserstein GAN[C]. SPIE 12495, DTCO and Computational Patterning II, San Jose, USA, 2023: 124951F. doi: 10.1117/12.2657584.
|
[68] |
CAO Qingchen, XU Peng, WEI Juan, et al. Hybrid deep learning OPC framework with generative adversarial network[C]. SPIE 12495, DTCO and Computational Patterning II, San Jose, USA, 2023: 124951R. doi: 10.1117/12.2658271.
|
[69] |
CIOU Weilun, HU T, TSAI Yiyen, et al. Machine learning optical proximity correction with generative adversarial networks[J]. Journal of Micro/Nanopatterning, Materials, and Metrology, 2022, 21(4): 041606. doi: 10.1117/1.JMM.21.4.041606.
|
[70] |
CAO Qingchen, XU Peng, SUN Song, et al. Generation of inverse assist features using generative adversarial networks[J]. Microelectronic Engineering, 2023, 273: 111951. doi: 10.1016/j.mee.2023.111951.
|
[71] |
ZHANG Shengen, MA Xu, and ZHANG Junbi. Fast inverse lithography approach based on a model-driven graph convolutional network[J]. Optics Express, 2023, 31(22): 36451–36467. doi: 10.1364/OE.493178.
|
[72] |
MA Xingyu and HAO Shaogang. Inverse lithography physics-informed deep neural level set for mask optimization[J]. Applied Optics, 2023, 62(33): 8769–8779. doi: 10.1364/AO.503332.
|
[73] |
HUNG C Y, ZHANG Bin, TANG Deming, et al. First 65nm tape-out using inverse lithography technology (ILT)[C]. SPIE 5992, 25th Annual BACUS Symposium on Photomask Technology, Monterey, California, USA, 2005: 59921U. doi: 10.1117/12.632415.
|
[74] |
CECIL T, BRAAM K, OMRAN A, et al. Establishing fast, practical, full-chip ILT flows using machine learning[C]. SPIE 11327, Optical Microlithography XXXIII, San Jose, USA, 2020: 1132706. doi: 10.1117/12.2551425.
|
[75] |
SHI Xuelong, YAN Yan, ZHOU Tao, et al. Fast and accurate machine learning inverse lithography using physics based feature maps and specially designed DCNN[C]. 2020 International Workshop on Advanced Patterning Solutions (IWAPS), Chengdu, China, 2020: 1–3. doi: 10.1109/IWAPS51164.2020.9286814.
|
[76] |
SUN Yiyu, LI Yanqiu, and LIU Lihui. Inverse lithography source and mask optimization via Bayesian compressive sensing[J]. Applied Optics, 2022, 61(20): 5838–5843. doi: 10.1364/AO.461288.
|