Advanced Search
Turn off MathJax
Article Contents
WANG Haibo, ZHANG Zaichen, GE Yingmeng, ZENG Han. Optical Intelligent Reflecting Surfaces-Assisted Distributed OMC for UAV Clusters[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240302
Citation: WANG Haibo, ZHANG Zaichen, GE Yingmeng, ZENG Han. Optical Intelligent Reflecting Surfaces-Assisted Distributed OMC for UAV Clusters[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240302

Optical Intelligent Reflecting Surfaces-Assisted Distributed OMC for UAV Clusters

doi: 10.11999/JEIT240302
Funds:  The National Natural Science Foundation of China (623B2017, 61960206005, 61803211, 61971136, 62171127), The National Key R&D Program of China (2020YFB1806603), The Fundamental Research Funds for the Central Universities (2242022k30001)
  • Received Date: 2024-04-19
  • Rev Recd Date: 2024-07-16
  • Available Online: 2024-08-02
  • As the scale of Unmanned Aerial Vehicle (UAV) systems and the demand for higher communication rates continue to grow, UAV Optical Mobile Communications (UAV-OMC) has emerged as a promising technical direction. However, it is difficult for traditional UAV-OMC to support multiple UAVs’ communications. In this paper, based on the Optical Intelligent Reflecting Surface (OIRS) technology, we propose a distributed OMC system for UAV clusters. By setting the OIRS on a specific UAV, we utilize OIRS to spread the optical signal from a single UAV node to multiple UAV nodes. While retaining the high energy efficiency and high speed of the UAV-OMC system, this system can support the communication of distributed UAV clusters. This paper conducts mathematical modeling of the proposed system. When modeling the system, we took into account a series of realistic factors, such as OIRS beam control, relative motion between UAVs, UAV jitter, which fit the actual system. Closed-form expressions for the system's Bit Error Rate (BER) and asymptotic outage probability are also derived. Based on theoretical analysis and simulation results, the effect of each parameter and system design have been discussed.
  • loading
  • [1]
    张在琛, 江浩. 智能超表面使能无人机高能效通信信道建模与传输机理分析[J]. 电子学报, 2023, 51(10): 2623–2634. doi: 10.12263/DZXB.20221352.

    ZHANG Zaichen and JIANG Hao. Channel modeling and characteristics analysis for high energy-efficient RIS-assisted UAV communications[J]. Acta Electronica Sinica, 2023, 51(10): 2623–2634. doi: 10.12263/DZXB.20221352.
    [2]
    朱秋明, 倪浩然, 华博宇, 等. 无人机毫米波信道测量与建模研究综述[J]. 移动通信, 2022, 46(12): 2–11. doi: 10.3969/j.issn.1006-1010.20221114-0001.

    ZHU Qiuming, NI Haoran, HUA Boyu, et al. A survey of UAV millimeter-wave channel measurement and modeling[J]. Mobile Communications, 2022, 46(12): 2–11. doi: 10.3969/j.issn.1006-1010.20221114-0001.
    [3]
    DABIRI M T, SADOUGH S M S, and ANSARI I S. Tractable optical channel modeling between UAVs[J]. IEEE Transactions on Vehicular Technology, 2019, 68(12): 11543–11550. doi: 10.1109/TVT.2019.2940226.
    [4]
    ZHANG Zaichen, DANG Jian, WU Liang, et al. Optical mobile communications: Principles, implementation, and performance analysis[J]. IEEE Transactions on Vehicular Technology, 2019, 68(1): 471–482. doi: 10.1109/TVT.2018.2880817.
    [5]
    NAJAFI M, SCHMAUSS B, and SCHOBER R. Intelligent reflecting surfaces for free space optical communication systems[J]. IEEE Transactions on Communications, 2021, 69(9): 6134–6151. doi: 10.1109/TCOMM.2021.3084637.
    [6]
    JAMALI V, AJAM H, NAJAFI M, et al. Intelligent reflecting surface assisted free-space optical communications[J]. IEEE Communications Magazine, 2021, 59(10): 57–63. doi: 10.1109/MCOM.001.2100406.
    [7]
    WANG Haibo, ZHANG Zaichen, ZHU Bingcheng, et al. Approaches to array-type optical IRSs: Schemes and comparative analysis[J]. Journal of Lightwave Technology, 2022, 40(12): 3576–3591. doi: 10.1109/JLT.2022.3152812.
    [8]
    MING Rui, ZHOU Zhiyan, LUO Xiwen, et al. Optical tracking system for multi-UAV clustering[J]. IEEE Sensors Journal, 2021, 21(17): 19382–19394. doi: 10.1109/JSEN.2021.3091280.
    [9]
    DABIRI M T, REZAEE M, MOHAMMADI L, et al. Modulating retroreflector based free space optical link for UAV-to-ground communications[J]. IEEE Transactions on Wireless Communications, 2022, 21(10): 8631–8645. doi: 10.1109/TWC.2022.3167945.
    [10]
    NATH S, SENGAR S, SHRIVASTAVA S K, et al. Impact of atmospheric turbulence, pointing error, and traffic pattern on the performance of cognitive hybrid FSO/RF system[J]. IEEE Transactions on Cognitive Communications and Networking, 2019, 5(4): 1194–1207. doi: 10.1109/TCCN.2019.2952116.
    [11]
    SANDALIDIS H G, TSIFTSIS T A, KARAGIANNIDIS G K, et al. BER performance of FSO links over strong atmospheric turbulence channels with pointing errors[J]. IEEE Communications Letters, 2008, 12(1): 44–46. doi: 10.1109/LCOMM.2008.071408.
    [12]
    IJAZ M, GHASSEMLOOY Z, PEREZ J, et al. Enhancing the atmospheric visibility and fog attenuation using a controlled FSO channel[J]. IEEE Photonics Technology Letters, 2013, 25(13): 1262–1265. doi: 10.1109/LPT.2013.2264046.
    [13]
    SUN Shiyuan, WANG Tengjiao, YANG Fang, et al. Intelligent reflecting surface-aided visible light communications: Potentials and challenges[J]. IEEE Vehicular Technology Magazine, 2022, 17(1): 47–56. doi: 10.1109/MVT.2021.3127869.
    [14]
    AJAM H, NAJAFI M, JAMALI V, et al. Modeling and design of IRS-assisted multilink FSO systems[J]. IEEE Transactions on Communications, 2022, 70(5): 3333–3349. doi: 10.1109/TCOMM.2022.3163767.
    [15]
    WANG Zhengdao and GIANNAKIS G B. A simple and general parameterization quantifying performance in fading channels[J]. IEEE Transactions on Communications, 2003, 51(8): 1389–1398. doi: 10.1109/TCOMM.2003.815053.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views (257) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return