Advanced Search
Turn off MathJax
Article Contents
SHEN Bingsheng, ZHOU Zhengchun, YANG Yang, FAN Pingzhi. A Non-interference Multi-Carrier Complementary Coded Division Multiple Access Dual-Functional Radar-Communication Scheme[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240297
Citation: SHEN Bingsheng, ZHOU Zhengchun, YANG Yang, FAN Pingzhi. A Non-interference Multi-Carrier Complementary Coded Division Multiple Access Dual-Functional Radar-Communication Scheme[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240297

A Non-interference Multi-Carrier Complementary Coded Division Multiple Access Dual-Functional Radar-Communication Scheme

doi: 10.11999/JEIT240297
Funds:  The National Natural Science Foundation of China (U23A20274, 62171389), Sichuan Natural Science Foundation Innovation Research Group (2024NSFTD0015), The Fundamental Research Funds for the Central Universities (2682024CX027)
  • Received Date: 2024-04-19
  • Rev Recd Date: 2024-06-26
  • Available Online: 2024-06-30
  • With the continuous emergence of new applications, the issue of spectrum congestion is becoming increasingly severe. Dual-Functional Radar-Communication (DFRC) is consideredas a key enabling technology for many emerging applications and is one of the essential approaches to addressing the issue of spectrum congestion. However, how to solve the mutual interference between communication and radar and achieve high communication rate is a fundamental challenge that urgently needs to be solved in DFRC system. Based on multi carrier complementary coded division multiple access technology, a DFRC signal suitable for multi-user scenarios is designed in this paper. Theoretical analysis and simulation results show that compared with typical spread spectrum schemes, the proposed scheme can achieve non-interference transmission between communication and radar, with low bit error rate and high user communication rate.
  • loading
  • [1]
    LIU Rang, LI Ming, LIU Qian, et al. Dual-functional radar-communication waveform design: A symbol-level precoding approach[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6): 1316–1331. doi: 10.1109/JSTSP.2021.3111438.
    [2]
    LIU Fan, CUI Yuanhao, MASOUROS C, et al. Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1728–1767. doi: 10.1109/JSAC.2022.3156632.
    [3]
    PAUL B, CHIRIYATH A R, and BLISS D W. Survey of RF communications and sensing convergence research[J]. IEEE Access, 2017, 5: 252–270. doi: 10.1109/ACCESS.2016.2639038.
    [4]
    YE Zhifan, ZHOU Zhengchun, FAN Pingzhi, et al. Low ambiguity zone: Theoretical bounds and doppler-resilient sequence design in integrated sensing and communication systems[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1809–1822. doi: 10.1109/JSAC.2022.3155510.
    [5]
    LIU Fan, ZHOU Longfei, MASOUROS C, et al. Toward dual-functional radar-communication systems: Optimal waveform design[J]. IEEE Transactions on Signal Processing, 2018, 66(16): 4264–4279. doi: 10.1109/TSP.2018.2847648.
    [6]
    LIU Fan, MASOUROS C, RATNARAJAH T, et al. On range sidelobe reduction for dual-functional radar-communication waveforms[J]. IEEE Wireless Communications Letters, 2020, 9(9): 1572–1576. doi: 10.1109/LWC.2020.2997959.
    [7]
    SU Nanchi, LIU Fan, and MASOUROS C. Sensing-assisted eavesdropper estimation: An ISAC breakthrough in physical layer security[J]. IEEE Transactions on Wireless Communications, 2024, 23(4): 3162–3174. doi: 10.1109/TWC.2023.3306029.
    [8]
    JIA Hanbo, LI Xiaoshuai, and MA Lin. Physical layer security optimization with Cramér-Rao bound metric in ISAC systems under sensing-specific imperfect CSI model[J]. IEEE Transactions on Vehicular Technology, 2024, 73(5): 6980–6992. doi: 10.1109/TVT.2023.3347527.
    [9]
    YU Zhiyuan, REN Hong, PAN Cunhua, et al. Active RIS aided ISAC systems: Beamforming design and performance analysis[J]. IEEE Transactions on Communications, 2024, 72(3): 1578–1595. doi: 10.1109/TCOMM.2023.3332856.
    [10]
    ZHU Qi, LI Ming, LIU Rang, et al. Joint transceiver beamforming and reflecting design for active RIS-aided ISAC systems[J]. IEEE Transactions on Vehicular Technology, 2023, 72(7): 9636–9640. doi: 10.1109/TVT.2023.3249752.
    [11]
    LYU Zhonghao, ZHU Guangxu, and XU Jie. Joint maneuver and beamforming design for UAV-enabled integrated sensing and communication[J]. IEEE Transactions on Wireless Communications, 2023, 22(4): 2424–2440. doi: 10.1109/TWC.2022.3211533.
    [12]
    GU Xiaohui and ZHANG Guoan. A survey on UAV-assisted wireless communications: Recent advances and future trends[J]. Computer Communications, 2023, 208: 44–78. doi: 10.1016/j.comcom.2023.05.013.
    [13]
    CHEN Xingbo, WANG Xiaomo, XU Shanfeng, et al. A novel radar waveform compatible with communication[C]. 2011 International Conference on Computational Problem-Solving (ICCP), Chengdu, China, 2011: 1–5. doi: 10.1109/ICCPS.2011.6092272.
    [14]
    曾浩, 吉利霞, 李凤, 等. 16QAM-LFM雷达通信一体化信号设计[J]. 通信学报, 2020, 41(3): 182–189. doi: 10.11959/j.issn.1000-436x.2020050.

    ZENG Hao, JI Lixia, LI Feng, et al. 16QAM-LFM waveform design for integrated radar and communication[J]. Journal on Communications, 2020, 41(3): 182–189. doi: 10.11959/j.issn.1000-436x.2020050.
    [15]
    STURM C and WIESBECK W. Waveform design and signal processing aspects for fusion of wireless communications and radar sensing[J]. Proceedings of the IEEE, 2011, 99(7): 1236–1259. doi: 10.1109/JPROC.2011.2131110.
    [16]
    KIHEI B, COPELAND J A, and CHANG Yusun. Design considerations for vehicle-to-vehicle IEEE 802.11p radar in collision avoidance[C]. 2015 IEEE Global Communications Conference (GLOBECOM), San Diego, USA, 2015: 1–7. doi: 10.1109/GLOCOM.2015.7417441.
    [17]
    ŞAHIN A, HOQUE S S M, and CHEN Chaoyu. Index modulation with circularly-shifted chirps for dual-function radar and communications[J]. IEEE Transactions on Wireless Communications, 2022, 21(5): 2938–2952. doi: 10.1109/TWC.2021.3117063.
    [18]
    XU S J, CHEN Y, and ZHANG P. Integrated radar and communication based on DS-UWB[C]. 2006 3rd International Conference on Ultrawideband and Ultrashort Impulse Signals, Sevastopol, Ukraine, 2006: 142–144. doi: 10.1109/UWBUS.2006.307182.
    [19]
    XU Shaojian, CHEN Bing, and ZHANG Ping. Radar-communication integration based on DSSS techniques[C]. 2006 8th international Conference on Signal Processing, Guilin, China, 2006: 1–4. doi: 10.1109/ICOSP.2006.346041.
    [20]
    JAMIL M, ZEPERNICK H J, and PETTERSSON M I. On integrated radar and communication systems using Oppermann sequences[C]. 2008 IEEE Military Communications Conference, San Diego, USA, 2008: 1–6. doi: 10.1109/MILCOM.2008.4753277.
    [21]
    TANG Lan, ZHANG Ke, DAI Haipeng, et al. Analysis and optimization of ambiguity function in radar-communication integrated systems using MPSK-DSSS[J]. IEEE Wireless Communications Letters, 2019, 8(6): 1546–1549. doi: 10.1109/LWC.2019.2926708.
    [22]
    CHEN Xu, FENG Zhiyong, WEI Zhiqing, et al. Code-division OFDM joint communication and sensing system for 6G machine-type communication[J]. IEEE Internet of Things Journal, 2021, 8(15): 12093–12105. doi: 10.1109/JIOT.2021.3060858.
    [23]
    李晓柏, 杨瑞娟, 程伟, 等. 新的互补序列在雷达通信一体化中的应用[J]. 系统工程与电子技术, 2021, 43(3): 693–699. doi: 10.12305/j.issn.1001-506X.2021.03.12.

    LI Xiaobai, YANG Ruijuan, CHENG Wei, et al. Application of a novel complementary signal to integrated radar and communication[J]. Systems Engineering and Electronics, 2021, 43(3): 693–699. doi: 10.12305/j.issn.1001-506X.2021.03.12.
    [24]
    赵羚岚, 杨奕冉, 刘喜庆, 等. 基于完全互补码扩频的通信雷达一体化系统[J]. 无线电通信技术, 2023, 49(1): 118–125. doi: 10.3969/j.issn.1003-3114.2023.01.014.

    ZHAO Linglan, YANG Yiran, LIU Xiqing, et al. Integrated communication and radar system based on complete complementary code spread spectrum[J]. Radio Communications Technology, 2023, 49(1): 118–125. doi: 10.3969/j.issn.1003-3114.2023.01.014.
    [25]
    LIU Xiqing, ZHAO Linglan, LIU Wenjing, et al. Complementary coded scrambling RadCom system-an integrated radar and communication design in multi-user-multi-target scenarios[J]. IEEE Transactions on Vehicular Technology, 2024, 73(1): 544–558. doi: 10.1109/TVT.2023.3301030.
    [26]
    TSENG C C and LIU C. Complementary sets of sequences[J]. IEEE Transactions on Information Theory, 1972, 18(5): 644–652. doi: 10.1109/TIT.1972.1054860.
    [27]
    GOLAY M. Complementary series[J]. IRE Transactions on Information Theory, 1961, 7(2): 82–87. doi: 10.1109/TIT.1961.1057620.
    [28]
    SUEHIRO N and HATORI M. N-shift cross-orthogonal sequences[J]. IEEE Transactions on Information Theory, 1988, 34(1): 143–146. doi: 10.1109/18.2615.
    [29]
    BORWEIN P B and FERGUSON R A. A complete description of Golay pairs for lengths up to 100[J]. Mathematics of Computation, 2003, 73(246): 967–985. doi: S0025-5718(3)01576-X. doi: 10.1090/S0025-5718-03-01576-X.
    [30]
    GU Zhi, ZHOU Zhengchun, ADHIKARY A R, et al. Asymptotically optimal Golay-ZCZ sequence sets with flexible length[J]. Chinese Journal of Electronics, 2023, 32(4): 806–820. doi: 10.23919/cje.2022.00.266.
    [31]
    JIN Yi and KOGA H. Basic properties of the complete complementary codes using the DFT matrices and the Kronecker products[C]. 2008 International Symposium on Information Theory and Its Applications, Auckland, New Zealand, 2008: 1–6. doi: 10.1109/ISITA.2008.4895532.
    [32]
    孙思月. 基于互补码的多用户无线传输技术及码设计方法[D]. [博士论文], 哈尔滨工业大学, 2014.

    SUN Siyue. Research on complementary coded multi-user wireless communication techniques and code design[D]. [Ph. D. dissertation], Harbin Institute of Technology, 2014.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (50) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return