Advanced Search
Volume 46 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
JI Zhongping, WANG Xiangwei, HE Zhiwei, DU Chenjie, JIN Ran, CHAI Bencheng. End-to-end Multi-Object Tracking Algorithm Integrating Global Local Feature Interaction and Angular Momentum Mechanism[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3703-3712. doi: 10.11999/JEIT240277
Citation: JI Zhongping, WANG Xiangwei, HE Zhiwei, DU Chenjie, JIN Ran, CHAI Bencheng. End-to-end Multi-Object Tracking Algorithm Integrating Global Local Feature Interaction and Angular Momentum Mechanism[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3703-3712. doi: 10.11999/JEIT240277

End-to-end Multi-Object Tracking Algorithm Integrating Global Local Feature Interaction and Angular Momentum Mechanism

doi: 10.11999/JEIT240277
Funds:  The National Natural Science Foundation of China (61671192), China Postdoctoral Science Foundation (2017M114), The Natural Foundation of Zhejiang Province (LY22F020025), The General Project of the Zhejiang Provincial Department of Education (Y202351320)
  • Received Date: 2024-04-15
  • Rev Recd Date: 2024-08-25
  • Available Online: 2024-08-30
  • Publish Date: 2024-09-26
  • A novel end-to-end algorithm is proposed to tackle the dependency of Multi-Object Tracking (MOT) algorithm performance on detection accuracy and data association strategies. Concerning detection, the Spatial Residual Feature Pyramid Network (SRFPN) is introduced based on feature pyramid networks to enhance feature fusion and information propagation efficiency. Subsequently, a Global Local Feature Interaction Module (GLFIM) is introduced to balance local details and global contextual information, thereby improving the focus of multi-scale feature outputs and the model’s adaptability to target scale variations. Regarding the association, an Angular Momentum Mechanism (AMM) is introduced to consider target motion direction, thereby enhancing the accuracy of target matching between consecutive frames. Experimental validation on MOT17 and UAVDT datasets demonstrates significant enhancements in both detection and association performance of the proposed tracker, showcasing robustness in complex scenarios such as target occlusion, scale variation, and cluttered backgrounds.
  • loading
  • [1]
    张红颖, 贺鹏艺. 基于卷积注意力模块和无锚框检测网络的行人跟踪算法[J]. 电子与信息学报, 2022, 44(9): 3299–3307. doi: 10.11999/JEIT210634.

    ZHANG Hongying and HE Pengyi. Pedestrian tracking algorithm based on convolutional block attention module and anchor-free detection network[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3299–3307. doi: 10.11999/JEIT210634.
    [2]
    伍瀚, 聂佳浩, 张照娓, 等. 基于深度学习的视觉多目标跟踪研究综述[J]. 计算机科学, 2023, 50(4): 77–87. doi: 10.11896/jsjkx.220300173.

    WU Han, NIE Jiahao, ZHANG Zhaowei, et al. Deep learning-based visual multiple object tracking: A review[J]. Computer Science, 2023, 50(4): 77–87. doi: 10.11896/jsjkx.220300173.
    [3]
    BEWLEY A, GE Zongyuan, OTT L, et al. Simple online and realtime tracking[C]. 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, USA, 2016: 3464–3468. doi: 10.1109/ICIP.2016.7533003.
    [4]
    SUN Shijie, AKHTAR N, SONG Huansheng, et al. Deep affinity network for multiple object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(1): 104–119. doi: 10.1109/TPAMI.2019.2929520.
    [5]
    WOJKE N, BEWLEY A, and PAULUS D. Simple online and realtime tracking with a deep association metric[C]. 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 2017: 3645–3649. doi: 10.1109/ICIP.2017.8296962.
    [6]
    WANG Zhongdao, ZHENG Liang, LIU Yixuan, et al. Towards real-time multi-object tracking[C]. 16th European Conference on Computer Vision, Glasgow, UK, 2020: 107–122. doi: 10.1007/978-3-030-58621-8_7.
    [7]
    ZHANG Yifu, WANG Chunyu, WANG Xinggang, et al. FairMOT: On the fairness of detection and re-identification in multiple object tracking[J]. International Journal of Computer Vision, 2021, 129(11): 3069–3087. doi: 10.1007/s11263-021-01513-4.
    [8]
    YU En, LI Zhuoling, HAN Shoudong, et al. RelationTrack: Relation-aware multiple object tracking with decoupled representation[J]. IEEE Transactions on Multimedia, 2023, 25: 2686–2697. doi: 10.1109/TMM.2022.3150169.
    [9]
    CHU Peng, WANG Jiang, YOU Quanzeng, et al. TransMOT: Spatial-temporal graph transformer for multiple object tracking[C]. Proceedings of 2023 IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, USA, 2023: 4859–4869. doi: 10.1109/WACV56688.2023.00485.
    [10]
    XU Yihong, BAN Yutong, DELORME G, et al. TransCenter: Transformers with dense representations for multiple-object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(6): 7820–7835. doi: 10.1109/TPAMI.2022.3225078.
    [11]
    PENG Jinlong, WANG Changan, WAN Fangbin, et al. Chained-tracker: Chaining paired attentive regression results for end-to-end joint multiple-object detection and tracking[C]. 16th European Conference on Computer Vision, Glasgow, UK, 2020: 145–161. doi: 10.1007/978-3-030-58548-8_9.
    [12]
    PANG Bo, LI Yizhuo, ZHANG Yifan, et al. TubeTK: Adopting tubes to track multi-object in a one-step training model[C]. Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 6307–6317. doi: 10.1109/CVPR42600.2020.00634.
    [13]
    ZHANG Chuang, ZHENG Sifa, WU Haoran, et al. AttentionTrack: Multiple object tracking in traffic scenarios using features attention[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(2): 1661–1674. doi: 10.1109/TITS.2023.3315222.
    [14]
    OGAWA T, SHIBATA T, and HOSOI T. FRoG-MOT: Fast and robust generic multiple-object tracking by IoU and motion-state associations[C]. 2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, USA, 2024: 6549–6558. doi: 10.1109/WACV57701.2024.00643.
    [15]
    HUANG Huimin, XIE Shiao, LIN Lanfen, et al. ScaleFormer: Revisiting the transformer-based backbones from a scale-wise perspective for medical image segmentation[C]. Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, Vienna, Austria, 2022: 964–971. doi: 10.24963/ijcai.2022/135.
    [16]
    MILAN A, LEAL-TAIXÉ L, REID I, et al. MOT16: A benchmark for multi-object tracking[EB/OL]. https://arxiv.org/abs/1603.00831, 2016.
    [17]
    DU Dawei, QI Yuankai, YU Hongyang, et al. The unmanned aerial vehicle benchmark: Object detection and tracking[C]. Proceedings of the 15th European Conference on Computer Vision, Munich, Germany, 2018: 375–391. doi: 10.1007/978-3-030-01249-6_23.
    [18]
    LUO Yutong, ZHONG Xinyue, ZENG Minchen, et al. CGLF-Net: Image emotion recognition network by combining global self-attention features and local multiscale features[J]. IEEE Transactions on Multimedia, 2024, 26: 1894–1908. doi: 10.1109/TMM.2023.3289762.
    [19]
    BRASÓ G and LEAL-TAIXÉ L. Learning a neural solver for multiple object tracking[C]. Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 6246–6256. doi: 10.1109/CVPR42600.2020.00628.
    [20]
    XIANG Jun, XU Guohan, MA Chao, et al. End-to-end learning deep CRF models for multi-object tracking deep CRF models[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(1): 275–288. doi: 10.1109/TCSVT.2020.2975842.
    [21]
    BERGMANN P, MEINHARDT T, and LEAL-TAIXÉ L. Tracking without bells and whistles[C]. Proceedings of 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 941–951. doi: 10.1109/ICCV.2019.00103.
    [22]
    ZHOU Yan, CHEN Junyu, WANG Dongli, et al. Multi-object tracking using context-sensitive enhancement via feature fusion[J]. Multimedia Tools and Applications, 2024, 83(7): 19465–19484. doi: 10.1007/s11042-023-16027-z.
    [23]
    BOCHINSKI E, EISELEIN V, and SIKORA T. High-speed tracking-by-detection without using image information[C]. 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Lecce, Italy, 2017: 1–6. doi: 10.1109/AVSS.2017.8078516.
    [24]
    ZHANG Yifu, SUN Peize, JIANG Yi, et al. ByteTrack: Multi-object tracking by associating every detection box[C]. 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 1–21. doi: 10.1007/978-3-031-20047-2_1.
    [25]
    LIU Songtao, HUANG Di, and WANG Yunhong. Receptive field block net for accurate and fast object detection[C]. Proceedings of the 15th European Conference on Computer Vision, Munich, Germany, 2018: 404–419. doi: 10.1007/978-3-030-01252-6_24.
    [26]
    PAN Huihui, HONG Yuanduo, SUN Weichao, et al. Deep dual-resolution networks for real-time and accurate semantic segmentation of traffic scenes[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(3): 3448–3460. doi: 10.1109/TITS.2022.3228042.
    [27]
    FU Jun, LIU Jing, TIAN Haijie, et al. Dual attention network for scene segmentation[C]. Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 3141–3149. doi: 10.1109/CVPR.2019.00326.
    [28]
    XIE Yakun, ZHU Jun, LAI Jianbo, et al. An enhanced relation-aware global-local attention network for escaping human detection in indoor smoke scenarios[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 186: 140–156. doi: 10.1016/j.isprsjprs.2022.02.006.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(6)

    Article Metrics

    Article views (198) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return