Advanced Search
Turn off MathJax
Article Contents
HU Yulin, XIAO Zhicheng, . Efficient Power Allocation Algorithm for Throughput Optimization of Multi-User Massive MIMO Systems in Finite Blocklength Regime[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240241
Citation: HU Yulin, XIAO Zhicheng, . Efficient Power Allocation Algorithm for Throughput Optimization of Multi-User Massive MIMO Systems in Finite Blocklength Regime[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240241

Efficient Power Allocation Algorithm for Throughput Optimization of Multi-User Massive MIMO Systems in Finite Blocklength Regime

doi: 10.11999/JEIT240241
Funds:  The National Key R&D Plan (2023YFE0206600)
  • Rev Recd Date: 2024-12-09
  • Available Online: 2024-12-12
  • The 6th Generation (6G) mobile communication network is required to provide Ultra-Reliable and Low-Latency Communication(URLLC) services for large-scale nodes. Considering the multi-user massive Multiple-Input Multiple-Out(MIMO) technology-assisted URLLC downlink communication scenario, system performance is characterized based on the Finite BlockLength(FBL) regime theory, and an efficient power allocation algorithm is proposed to improve the users’ transmission rate under fairness issue. Specifically, the traditional MIMO systems utilize the global Singular Value Decomposition(SVD) linear precoding scheme, leading to high complexity and inability to guarantee the fairness of rates among users. To deal with these challenges, a precoding scheme based on the local SVD is proposed to effectively suppress inter-user interference and intra-user interference of MIMO system with relatively low complexity. Secondly, the optimization problem is formulated, where the power allocation factors are optimized to Maximize Minimum Rate (MMR) among users. In order to efficiently solve the non-convex problem containing high-dimensional variables which are coupled with each other, the Shannon capacity term in the objective function is relaxed by introducing auxiliary variables and piecewise McCormick envelopes, and it is transformed into convex functions, thereby reformulating the MMR problem. An optimization algorithm based on the Successive Convex Approximation (SCA) is proposed to solve the reformulated problem effectively. Simulation results validate the convergence and accuracy of the proposed optimization algorithm, and it is shown that the proposed optimization algorithm has advantages over the existing schemes in terms of system MMR performance and robustness.
  • loading
  • [1]
    HAMIDI-SEPEHR F, SAJADIEH M, PANTELEEV S, et al. 5G URLLC: Evolution of high-performance wireless networking for industrial automation[J]. IEEE Communications Standards Magazine, 2021, 5(2): 132–140. doi: 10.1109/MCOMSTD.001.2000035.
    [2]
    International Telecommunication Union. IMT Vision—Framework and Overall Objectives of the Future Development of IMT for 2020 and Beyond[M]. Geneva: Electronic Publication, 2015. (查阅网上资料, 未能确认文献类型, 请确认) .
    [3]
    ZHANG Zhengquan, XIAO Yue, MA Zheng, et al. 6G wireless networks: Vision, requirements, architecture, and key technologies[J]. IEEE Vehicular Technology Magazine, 2019, 14(3): 28–41. doi: 10.1109/MVT.2019.2921208.
    [4]
    袁伟杰, 李双洋, 种若汐, 等. 面向6G物联网的分布式译码技术[J]. 电子与信息学报, 2021, 43(1): 21–27. doi: 10.11999/JEIT200343.

    YUAN Weijie, LI Shuangyang, CHONG Ruoxi, et al. A distributed decoding algorithm for 6G internet-of-things networks[J]. Journal of Electronics & Information Technology, 2021, 43(1): 21–27. doi: 10.11999/JEIT200343.
    [5]
    ZHANG Zhengquan, XIAO Yue, MA Zheng, et al. 6G wireless networks: Vision, requirements, architecture, and key technologies[J]. IEEE Vehicular Technology Magazine, 2019, 14(3): 28–41. doi: 10.1109/MVT.2019.2921208. (查阅网上所有资料,本条文献和第3条文献重复,请核对) .
    [6]
    黄崇文, 季然, 魏丽, 等. 面向全息MIMO 6G通信的电磁信道建模理论与方法[J]. 电子与信息学报, 2024, 46(5): 1940–1950. doi: 10.11999/JEIT231219.

    HUANG Chongwen, JI Ran, WEI Li, et al. Electromagnetic channel modeling theory and approaches for holographic MIMO wireless communications[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1940–1950. doi: 10.11999/JEIT231219.
    [7]
    MA Wenyan, ZHU Lipeng, and ZHANG Rui. MIMO capacity characterization for movable antenna systems[J]. IEEE Transactions on Wireless Communications, 2024, 23(4): 3392–3407. doi: 10.1109/TWC.2023.3307696.
    [8]
    CHI Yuhao, LIU Lei, SONG Lei, et al. Constrained capacity optimal generalized multi-user MIMO: A theoretical and practical framework[J]. IEEE Transactions on Communications, 2022, 70(12): 8086–8104. doi: 10.1109/TCOMM.2022.3207813.
    [9]
    LV Zhihan, QIAO Liang, and YOU I. 6G-enabled network in box for internet of connected vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(8): 5275–5282. doi: 10.1109/TITS.2020.3034817.
    [10]
    WANG Bin, XU Ke, ZHENG Shilian, et al. A deep learning-based intelligent receiver for improving the reliability of the MIMO wireless communication system[J]. IEEE Transactions on Reliability, 2022, 71(2): 1104–1115. doi: 10.1109/TR.2022.3148114.
    [11]
    POLYANSKIY Y, POOR H V, and VERDU S. Channel coding rate in the finite blocklength regime[J]. IEEE Transactions on Information Theory, 2010, 56(5): 2307–2359. doi: 10.1109/TIT.2010.2043769.
    [12]
    YANG Wei, DURISI G, KOCH T, et al. Quasi-static multiple-antenna fading channels at finite blocklength[J]. IEEE Transactions on Information Theory, 2014, 60(7): 4232–4265. doi: 10.1109/TIT.2014.2318726.
    [13]
    ZHU Yao, HU Yulin, YUAN Xiaopeng, et al. Joint convexity of error probability in blocklength and transmit power in the finite blocklength regime[J]. IEEE Transactions on Wireless Communications, 2023, 22(4): 2409–2423. doi: 10.1109/TWC.2022.3211454.
    [14]
    ZHAO Linlin, YANG Shaoshi, CHI Xuefen, et al. Achieving energy-efficient uplink URLLC with MIMO-aided grant-free access[J]. IEEE Transactions on Wireless Communications, 2022, 21(2): 1407–1420. doi: 10.1109/TWC.2021.3104043.
    [15]
    PENG Qihao, REN Hong, PAN Cunhua, et al. Resource allocation for uplink cell-free massive MIMO enabled URLLC in a smart factory[J]. IEEE Transactions on Communications, 2023, 71(1): 553–568. doi: 10.1109/TCOMM.2022.3224502.
    [16]
    HE Shiwen, AN Zhenyu, ZHU Jianyue, et al. Beamforming design for multiuser uRLLC with finite blocklength transmission[J]. IEEE Transactions on Wireless Communications, 2021, 20(12): 8096–8109. doi: 10.1109/TWC.2021.3090197.
    [17]
    FANG Hao, HU Han, ZHANG Yao, et al. Achievable rate analysis and power optimization for cell-free massive MIMO URLLC systems over aging and correlated channels[J]. IEEE Internet of Things Journal, 2024, 11(14): 25239–25250. doi: 10.1109/JIOT.2024.3392298.
    [18]
    SHENG Zhichao, TUAN H D, NASIR A, et al. Power allocation for energy efficiency and secrecy of wireless interference networks[J]. IEEE Transactions on Wireless Communications, 2018, 17(6): 3737–3751. doi: 10.1109/TWC.2018.2815626.
    [19]
    JIANG Hao, ZHANG Zaichen, WU Liang, et al. A non-stationary geometry-based scattering vehicle-to-vehicle MIMO channel model[J]. IEEE Communications Letters, 2018, 22(7): 1510–1513. doi: 10.1109/LCOMM.2018.2834366.
    [20]
    HUANG Jie, WANG Chengxiang, CHANG Hengtai, et al. Multi-frequency multi-scenario millimeter wave MIMO channel measurements and modeling for B5G wireless communication systems[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(9): 2010–2025. doi: 10.1109/JSAC.2020.3000839.
    [21]
    WANG Jun, WANG Chengxiang, HUANG Jie, et al. A general 3D space-time-frequency non-stationary THz channel model for 6G ultra-massive MIMO wireless communication systems[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(6): 1576–1589. doi: 10.1109/JSAC.2021.3071850.
    [22]
    YANG Guanghua, ZHANG Huan, SHI Zheng, et al. Asymptotic outage analysis of spatially correlated rayleigh MIMO channels[J]. IEEE Transactions on Broadcasting, 2021, 67(1): 263–278. doi: 10.1109/TBC.2020.3028346.
    [23]
    JOUNG H, JO H S, MUN C, et al. Capacity loss due to polarization-mismatch and space-correlation on MISO channel[J]. IEEE Transactions on Wireless Communications, 2014, 13(4): 2124–2136. doi: 10.1109/TWC.2014.031314.131079.
    [24]
    LIU An, LAU V K N, and KANANIAN B. Stochastic successive convex approximation for non-convex constrained stochastic optimization[J]. IEEE Transactions on Signal Processing, 2019, 67(16): 4189–4203. doi: 10.1109/TSP.2019.2925601.
    [25]
    ZHAN Jinlong and DONG Xiaodai. Interference cancellation aided hybrid beamforming for mmwave multi-user massive MIMO systems[J]. IEEE Transactions on Vehicular Technology, 2021, 70(3): 2322–2336. doi: 10.1109/TVT.2021.3057547.
    [26]
    LONG Wenxuan, CHEN Rui, MORETTI M, et al. Joint spatial division and coaxial multiplexing for downlink multi-user OAM wireless backhaul[J]. IEEE Transactions on Broadcasting, 2021, 67(4): 879–893. doi: 10.1109/TBC.2021.3081869.
    [27]
    FONTENLA-ROMERO O, PÉREZ-SÁNCHEZ B, and GUIJARRO-BERDIÑAS B. LANN-SVD: A non-iterative SVD-based learning algorithm for one-layer neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(8): 3900–3905. doi: 10.1109/TNNLS.2017.2738118.
    [28]
    KOLODZIEJ S, CASTRO P M, and GROSSMANN I E. Global optimization of bilinear programs with a multiparametric disaggregation technique[J]. Journal of Global Optimization, 2013, 57(4): 1039–1063. doi: 10.1007/s10898-012-0022-1.
    [29]
    DE ASSIS L S, CAMPONOGARA E, ZIMBERG B, et al. A piecewise McCormick relaxation-based strategy for scheduling operations in a crude oil terminal[J]. Computers & Chemical Engineering, 2017, 106: 309–321. doi: 10.1016/j.compchemeng.2017.06.012.
    [30]
    BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004: 67–95.
    [31]
    NASIR A A, TUAN H D, NGO H Q, et al. Cell-free massive MIMO in the short blocklength regime for URLLC[J]. IEEE Transactions on Wireless Communications, 2021, 20(9): 5861–5871. doi: 10.1109/TWC.2021.3070836.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (24) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return