Citation: | HU Yulin, XIAO Zhicheng, . Efficient Power Allocation Algorithm for Throughput Optimization of Multi-User Massive MIMO Systems in Finite Blocklength Regime[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240241 |
[1] |
HAMIDI-SEPEHR F, SAJADIEH M, PANTELEEV S, et al. 5G URLLC: Evolution of high-performance wireless networking for industrial automation[J]. IEEE Communications Standards Magazine, 2021, 5(2): 132–140. doi: 10.1109/MCOMSTD.001.2000035.
|
[2] |
International Telecommunication Union. IMT Vision—Framework and Overall Objectives of the Future Development of IMT for 2020 and Beyond[M]. Geneva: Electronic Publication, 2015. (查阅网上资料, 未能确认文献类型, 请确认) .
|
[3] |
ZHANG Zhengquan, XIAO Yue, MA Zheng, et al. 6G wireless networks: Vision, requirements, architecture, and key technologies[J]. IEEE Vehicular Technology Magazine, 2019, 14(3): 28–41. doi: 10.1109/MVT.2019.2921208.
|
[4] |
袁伟杰, 李双洋, 种若汐, 等. 面向6G物联网的分布式译码技术[J]. 电子与信息学报, 2021, 43(1): 21–27. doi: 10.11999/JEIT200343.
YUAN Weijie, LI Shuangyang, CHONG Ruoxi, et al. A distributed decoding algorithm for 6G internet-of-things networks[J]. Journal of Electronics & Information Technology, 2021, 43(1): 21–27. doi: 10.11999/JEIT200343.
|
[5] |
ZHANG Zhengquan, XIAO Yue, MA Zheng, et al. 6G wireless networks: Vision, requirements, architecture, and key technologies[J]. IEEE Vehicular Technology Magazine, 2019, 14(3): 28–41. doi: 10.1109/MVT.2019.2921208. (查阅网上所有资料,本条文献和第3条文献重复,请核对) .
|
[6] |
黄崇文, 季然, 魏丽, 等. 面向全息MIMO 6G通信的电磁信道建模理论与方法[J]. 电子与信息学报, 2024, 46(5): 1940–1950. doi: 10.11999/JEIT231219.
HUANG Chongwen, JI Ran, WEI Li, et al. Electromagnetic channel modeling theory and approaches for holographic MIMO wireless communications[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1940–1950. doi: 10.11999/JEIT231219.
|
[7] |
MA Wenyan, ZHU Lipeng, and ZHANG Rui. MIMO capacity characterization for movable antenna systems[J]. IEEE Transactions on Wireless Communications, 2024, 23(4): 3392–3407. doi: 10.1109/TWC.2023.3307696.
|
[8] |
CHI Yuhao, LIU Lei, SONG Lei, et al. Constrained capacity optimal generalized multi-user MIMO: A theoretical and practical framework[J]. IEEE Transactions on Communications, 2022, 70(12): 8086–8104. doi: 10.1109/TCOMM.2022.3207813.
|
[9] |
LV Zhihan, QIAO Liang, and YOU I. 6G-enabled network in box for internet of connected vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(8): 5275–5282. doi: 10.1109/TITS.2020.3034817.
|
[10] |
WANG Bin, XU Ke, ZHENG Shilian, et al. A deep learning-based intelligent receiver for improving the reliability of the MIMO wireless communication system[J]. IEEE Transactions on Reliability, 2022, 71(2): 1104–1115. doi: 10.1109/TR.2022.3148114.
|
[11] |
POLYANSKIY Y, POOR H V, and VERDU S. Channel coding rate in the finite blocklength regime[J]. IEEE Transactions on Information Theory, 2010, 56(5): 2307–2359. doi: 10.1109/TIT.2010.2043769.
|
[12] |
YANG Wei, DURISI G, KOCH T, et al. Quasi-static multiple-antenna fading channels at finite blocklength[J]. IEEE Transactions on Information Theory, 2014, 60(7): 4232–4265. doi: 10.1109/TIT.2014.2318726.
|
[13] |
ZHU Yao, HU Yulin, YUAN Xiaopeng, et al. Joint convexity of error probability in blocklength and transmit power in the finite blocklength regime[J]. IEEE Transactions on Wireless Communications, 2023, 22(4): 2409–2423. doi: 10.1109/TWC.2022.3211454.
|
[14] |
ZHAO Linlin, YANG Shaoshi, CHI Xuefen, et al. Achieving energy-efficient uplink URLLC with MIMO-aided grant-free access[J]. IEEE Transactions on Wireless Communications, 2022, 21(2): 1407–1420. doi: 10.1109/TWC.2021.3104043.
|
[15] |
PENG Qihao, REN Hong, PAN Cunhua, et al. Resource allocation for uplink cell-free massive MIMO enabled URLLC in a smart factory[J]. IEEE Transactions on Communications, 2023, 71(1): 553–568. doi: 10.1109/TCOMM.2022.3224502.
|
[16] |
HE Shiwen, AN Zhenyu, ZHU Jianyue, et al. Beamforming design for multiuser uRLLC with finite blocklength transmission[J]. IEEE Transactions on Wireless Communications, 2021, 20(12): 8096–8109. doi: 10.1109/TWC.2021.3090197.
|
[17] |
FANG Hao, HU Han, ZHANG Yao, et al. Achievable rate analysis and power optimization for cell-free massive MIMO URLLC systems over aging and correlated channels[J]. IEEE Internet of Things Journal, 2024, 11(14): 25239–25250. doi: 10.1109/JIOT.2024.3392298.
|
[18] |
SHENG Zhichao, TUAN H D, NASIR A, et al. Power allocation for energy efficiency and secrecy of wireless interference networks[J]. IEEE Transactions on Wireless Communications, 2018, 17(6): 3737–3751. doi: 10.1109/TWC.2018.2815626.
|
[19] |
JIANG Hao, ZHANG Zaichen, WU Liang, et al. A non-stationary geometry-based scattering vehicle-to-vehicle MIMO channel model[J]. IEEE Communications Letters, 2018, 22(7): 1510–1513. doi: 10.1109/LCOMM.2018.2834366.
|
[20] |
HUANG Jie, WANG Chengxiang, CHANG Hengtai, et al. Multi-frequency multi-scenario millimeter wave MIMO channel measurements and modeling for B5G wireless communication systems[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(9): 2010–2025. doi: 10.1109/JSAC.2020.3000839.
|
[21] |
WANG Jun, WANG Chengxiang, HUANG Jie, et al. A general 3D space-time-frequency non-stationary THz channel model for 6G ultra-massive MIMO wireless communication systems[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(6): 1576–1589. doi: 10.1109/JSAC.2021.3071850.
|
[22] |
YANG Guanghua, ZHANG Huan, SHI Zheng, et al. Asymptotic outage analysis of spatially correlated rayleigh MIMO channels[J]. IEEE Transactions on Broadcasting, 2021, 67(1): 263–278. doi: 10.1109/TBC.2020.3028346.
|
[23] |
JOUNG H, JO H S, MUN C, et al. Capacity loss due to polarization-mismatch and space-correlation on MISO channel[J]. IEEE Transactions on Wireless Communications, 2014, 13(4): 2124–2136. doi: 10.1109/TWC.2014.031314.131079.
|
[24] |
LIU An, LAU V K N, and KANANIAN B. Stochastic successive convex approximation for non-convex constrained stochastic optimization[J]. IEEE Transactions on Signal Processing, 2019, 67(16): 4189–4203. doi: 10.1109/TSP.2019.2925601.
|
[25] |
ZHAN Jinlong and DONG Xiaodai. Interference cancellation aided hybrid beamforming for mmwave multi-user massive MIMO systems[J]. IEEE Transactions on Vehicular Technology, 2021, 70(3): 2322–2336. doi: 10.1109/TVT.2021.3057547.
|
[26] |
LONG Wenxuan, CHEN Rui, MORETTI M, et al. Joint spatial division and coaxial multiplexing for downlink multi-user OAM wireless backhaul[J]. IEEE Transactions on Broadcasting, 2021, 67(4): 879–893. doi: 10.1109/TBC.2021.3081869.
|
[27] |
FONTENLA-ROMERO O, PÉREZ-SÁNCHEZ B, and GUIJARRO-BERDIÑAS B. LANN-SVD: A non-iterative SVD-based learning algorithm for one-layer neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(8): 3900–3905. doi: 10.1109/TNNLS.2017.2738118.
|
[28] |
KOLODZIEJ S, CASTRO P M, and GROSSMANN I E. Global optimization of bilinear programs with a multiparametric disaggregation technique[J]. Journal of Global Optimization, 2013, 57(4): 1039–1063. doi: 10.1007/s10898-012-0022-1.
|
[29] |
DE ASSIS L S, CAMPONOGARA E, ZIMBERG B, et al. A piecewise McCormick relaxation-based strategy for scheduling operations in a crude oil terminal[J]. Computers & Chemical Engineering, 2017, 106: 309–321. doi: 10.1016/j.compchemeng.2017.06.012.
|
[30] |
BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004: 67–95.
|
[31] |
NASIR A A, TUAN H D, NGO H Q, et al. Cell-free massive MIMO in the short blocklength regime for URLLC[J]. IEEE Transactions on Wireless Communications, 2021, 20(9): 5861–5871. doi: 10.1109/TWC.2021.3070836.
|