Citation: | DONG Rongen, XIE Zhongyi, MA Haibo, ZHAO Feilong, SHU Feng. Performance Analysis of Discrete-Phase-Shifter IRS-aided Amplify-and-Forward Relay Network[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240236 |
[1] |
LIN Ruiquan, QIU Hangding, WANG Jun, et al. Physical-layer security enhancement in energy-harvesting-based cognitive internet of things: A GAN-powered deep reinforcement learning approach[J]. IEEE Internet of Things Journal, 2024, 11(3): 4899–4913. doi: 10.1109/JIOT.2023.3300770.
|
[2] |
LIN Ruiquan, LI Fushuai, WANG Jun, et al. A blockchain-based method to defend against massive SSDF attacks in cognitive internet of vehicles[J]. IEEE Transactions on Vehicular Technology, 2024, 73(5): 6954–6967. doi: 10.1109/TVT.2023.3347430.
|
[3] |
COVER T and GAMAL A E. Capacity theorems for the relay channel[J]. IEEE Transactions on Information Theory, 1979, 25(5): 572–584. doi: 10.1109/TIT.1979.1056084.
|
[4] |
DING Haiyang, GE Jianhua, DA COSTA D B, et al. Diversity and coding gains of fixed-gain amplify-and-forward with partial relay selection in Nakagami-m fading[J]. IEEE Communications Letters, 2010, 14(8): 734–736. doi: 10.1109/LCOMM.2010.08.100530.
|
[5] |
BLETSAS A, SHIN H, and WIN M Z. Cooperative communications with outage-optimal opportunistic relaying[J]. IEEE Transactions on Wireless Communications, 2007, 6(9): 3450–3460. doi: 10.1109/TWC.2007.06020050.
|
[6] |
LANEMAN J N and WORNELL G W. Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks[J]. IEEE Transactions on Information Theory, 2023, 49(10): 2415–2425. doi: 10.1109/TIT.2003.817829.
|
[7] |
ARTHI M, JOY J J, ARULMOZHIVARMAN P, et al. An efficient relay station deployment scheme based on the coverage and budget constraints in multi-hop relay networks[C]. 2015 International Conference on Communications and Signal Processing (ICCSP), Melmaruvathur, India, 2015: 124–128. doi: 10.1109/ICCSP.2015.7322702.
|
[8] |
YILMAZ E, ZAKHOUR R, GESBERT D, et al. Multi-pair two-way relay channel with multiple antenna relay station[J]. 2010 IEEE International Conference on Communications, Cape Town, South Africa, 2010: 1–5. doi: 10.1109/ICC.2010.5502396.
|
[9] |
RANKOV B and WITTNEBEN A. Spectral efficient protocols for half-duplex fading relay channels[J]. IEEE Journal on Selected Areas in Communications, 2007, 25(2): 379–389. doi: 10.1109/JSAC.2007.070213.
|
[10] |
ZHANG Zhang, LV Tiejun, and SU Xin. Combining cooperative diversity and multiuser diversity: a fair scheduling scheme for multi-source multi-relay networks[J]. IEEE Communications Letters, 2011, 15(12): 1353–1355. doi: 10.1109/LCOMM.2011.102611.111715.
|
[11] |
张在琛, 江浩. 智能超表面使能无人机高能效通信信道建模与传输机理分析[J]. 电子学报, 2023, 51(10): 2623–2634. doi: 10.12263/DZXB.20221352.
ZHANG Zaichen and JIANG Hao. Channel modeling and characteristics analysis for high energy-efficient RIS-assisted UAV communications[J]. Acta Electronica Sinica, 2023, 51(10): 2623–2634. doi: 10.12263/DZXB.20221352.
|
[12] |
CHEN Kangjian, QI Chenhao, DOBRE O A, et al. Simultaneous beam training and target sensing in ISAC systems with RIS[J]. IEEE Transactions on Wireless Communications, 2024, 23(4): 2696–2710. doi: 10.1109/TWC.2023.3302319.
|
[13] |
JIANG Hao, RUAN Chengyao, ZHANG Zaichen, et al. A general wideband non-stationary stochastic channel model for intelligent reflecting surface-assisted MIMO communications[J]. IEEE Transactions on Wireless Communications, 2021, 20(8): 5314–5328. doi: 10.1109/TWC.2021.3066806.
|
[14] |
ZHANG Chencheng, QI Chenhao, and NALLANATHAN A. Fast multibeam training for RIS-assisted millimeter wave massive MIMO[J]. IEEE Communications Letters, 2024, 28(1): 168–172. doi: 10.1109/LCOMM.2023.3333683.
|
[15] |
PAN Cunhua, REN Hong, WANG Kezhi, et al. Multicell MIMO communications relying on intelligent reflecting surfaces[J]. IEEE Transactions on Wireless Communications, 2020, 19(8): 5218–5233. doi: 10.1109/TWC.2020.2990766.
|
[16] |
NIU Hehao, CHU Zheng, ZHOU Fuhui, et al. Weighted sum secrecy rate maximization using intelligent reflecting surface[J]. IEEE Transactions on Communications, 2021, 69(9): 6170–6184. doi: 10.1109/TCOMM.2021.3085780.
|
[17] |
YILDIRIM I, KILINC F, BASAR E, et al. Hybrid RIS-empowered reflection and decode-and-forward relaying for coverage extension[J]. IEEE Communications Letters, 2021, 25(5): 1692–1696. doi: 10.1109/LCOMM.2021.3054819.
|
[18] |
GALAPPATHTHIGE D L, DEVKOTA A, and AMARASURIYA G. On the performance of IRS-assisted relay systems[C]. 2021 IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 2021: 1–6. doi: 10.1109/GLOBECOM46510.2021.9685500.
|
[19] |
LIU Chang, ZHOU Jiayu, GAO Ying, et al. IRS-aided secure communications over an untrusted AF relay system[J]. IEEE Transactions on Wireless Communications, 2023, 22(12): 8620–8633. doi: 10.1109/TWC.2023.3264626.
|
[20] |
TALWAR S, JING Yindi, and SHAHBAZPANAHI S. Joint relay selection and power allocation for two-way relay networks[J]. IEEE Signal Processing Letters, 2011, 18(2): 91–94. doi: 10.1109/LSP.2010.2096466.
|
[21] |
TAO Ye, LI Qiang, and GE Xiaohu. Sum rate optimization for IRS-aided two-way AF relay systems[C]. 2021 IEEE/CIC International Conference on Communications in China (ICCC), Xiamen, China, 2021: 823–828. doi: 10.1109/ICCC52777.2021.9580369.
|
[22] |
DONG Rongen, SHI Baihua, ZHAN Xichao, et al. Performance analysis of massive hybrid directional modulation with mixed phase shifters[J]. IEEE Transactions on Vehicular Technology, 2022, 71(5): 5604–5608. doi: 10.1109/TVT.2022.3152807.
|
[23] |
DONG Rongen, TENG Yin, SUN Zhongwen, et al. Performance analysis of wireless network aided by discrete-phase-shifter IRS[J]. Journal of Communications and Networks, 2022, 24(5): 603–612. doi: 10.23919/JCN.2022.000029.
|