Advanced Search
Volume 46 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
TANG Shu, ZHOU Guangyi, XIE Xianzhong, ZHAO Yu, YANG Shuli. A Multi-scale-multi-input Complementation Classification Network for Fast Coding Tree Unit Partition[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3646-3653. doi: 10.11999/JEIT240223
Citation: TANG Shu, ZHOU Guangyi, XIE Xianzhong, ZHAO Yu, YANG Shuli. A Multi-scale-multi-input Complementation Classification Network for Fast Coding Tree Unit Partition[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3646-3653. doi: 10.11999/JEIT240223

A Multi-scale-multi-input Complementation Classification Network for Fast Coding Tree Unit Partition

doi: 10.11999/JEIT240223
Funds:  The National Natural Science Foundation of China (61601070), Chongqing Natural Science Foundation General Project (CSTB2023NSCQ-MSX0680), The Major Project of Science and Technology Research of Chongqing Education Commission (KJZD-M202300101), The Innovative Talents Project for Doctoral students of Chongqing University of Posts and Telecommunications (BYJS202217)
  • Received Date: 2024-03-29
  • Rev Recd Date: 2024-07-21
  • Available Online: 2024-08-03
  • Publish Date: 2024-09-26
  • Deep Neural Networks (DNN) have been widely applied to Coding Tree Unit(CTU) partition of intra-mode High Efficiency Video Coding(HEVC) for reducing the HEVC encoding complexity, however, existing DNN-based CTU partition methods always neglect the correlation of features between Coding Units (CU) at different scales and suffer from the accumulation of classification errors. Therefore, in this paper, a Multi-scale-multi-input Complementation Classification Network (MCCN) for faster and more accurate CTU partition is proposed. First, a Multi-scale Multi-input Convolutional Neural Network (MMCNN) is proposed, which builds up the correlation of features between CUs at different scales by fusing multi-scale CU features. Therefore, our MMCNN possess more powerful representation abilities. Second, a Complementary Classification Strategy (CCS) is proposed, in which the final depth prediction results for each CU are determined by combining the results of multi-classification with the results of binary classification and triplex classification with the voting mechanism. The proposed CCS avoids the accumulation of classification errors and achieves more accurate CTU partition. Extensive experiments demonstrate that our MCCN achieves lower HEVC encoding complexity and more accurate CTU partition: reduce the average encoding complexity by 71.49% only at the cost of a 3.18% average Bjøntegaard Delta Bit-Rate(BD-BR). And the average accuracies of 32×32 CU depth prediction and 16×16 CU depth prediction are increased by 0.65%~0.93% and 2.14%~9.27% respectively.
  • loading
  • [1]
    SULLIVAN G J, OHM J R, HAN W J, et al. Overview of the high efficiency video coding (HEVC) standard[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2012, 22(12): 1649–1668. doi: 10.1109/TCSVT.2012.2221191.
    [2]
    WIEGAND T, SULLIVAN G J, BJONTEGAARD G, et al. Overview of the H. 264/AVC video coding standard[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2003, 13(7): 560–576. doi: 10.1109/TCSVT.2003.815165.
    [3]
    POURAZAD M T, DOUTRE C, AZIMI M, et al. HEVC: The new gold standard for video compression: How does HEVC compare with H. 264/AVC?[J]. IEEE Consumer Electronics Magazine, 2012, 1(3): 36–46. doi: 10.1109/MCE.2012.2192754.
    [4]
    ZHAO Liang, FAN Xiaopeng, MA Siwei, et al. Fast intra-encoding algorithm for high efficiency video coding[J]. Signal Processing: Image Communication, 2014, 29(9): 935–944. doi: 10.1016/j.image.2014.06.008.
    [5]
    KIM N, JEON S, SHIM H J, et al. Adaptive keypoint-based CU depth decision for HEVC intra coding[C]. 2016 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Nara, Japan, 2016: 1–3. doi: 10.1109/BMSB.2016.7521923.
    [6]
    ZHANG Tao, SUN Mingting, ZHAO Debin, et al. Fast intra-mode and CU size decision for HEVC[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27(8): 1714–1726. doi: 10.1109/TCSVT.2016.2556518.
    [7]
    JAMALI M and COULOMBE S. Fast HEVC intra mode decision based on RDO cost prediction[J]. IEEE Transactions on Broadcasting, 2019, 65(1): 109–122. doi: 10.1109/TBC.2018.2847464.
    [8]
    AMNA M, IMEN W, NACIR O, et al. SVM-Based method to reduce HEVC CU partition complexity[C]. 2022 19th International Multi-Conference on Systems, Signals & Devices (SSD), Sétif, Algeria, 2022: 480–484. doi: 10.1109/SSD54932.2022.9955731.
    [9]
    WERDA I, MARAOUI A, SAYADI F E, et al. Fast CU partition and intra mode prediction method for HEVC[C]. 2022 IEEE 9th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT), Hammamet, Tunisia, 2022: 562–566. doi: 10.1109/SETIT54465.2022.9875798.
    [10]
    YU Xianyu, LIU Zhenyu, LIU Junjie, et al. VLSI friendly fast CU/PU mode decision for HEVC intra encoding: Leveraging convolution neural network[C]. 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, Canada, 2015: 1285–1289. doi: 10.1109/ICIP.2015.7351007.
    [11]
    LI Tianyi, XU Mai, and DENG Xin. A deep convolutional neural network approach for complexity reduction on intra-mode HEVC[C]. 2017 IEEE International Conference on Multimedia and Expo (ICME), Hong Kong, China, 2017: 1255–1260. doi: 10.1109/ICME.2017.8019316.
    [12]
    XU Mai, LI Tianyi, WANG Zulin, et al. Reducing complexity of HEVC: A deep learning approach[J]. IEEE Transactions on Image Processing, 2018, 27(10): 5044–5059. doi: 10.1109/TIP.2018.2847035.
    [13]
    LI Huayu, WEI Geng, WANG Ting, et al. Reducing video coding complexity based on CNN-CBAM in HEVC[J]. Applied Sciences, 2023, 13(18): 10135. doi: 10.3390/app131810135.
    [14]
    QIN Liming, ZHU Zhongjie, BAI Yongqiang, et al. A complexity-reducing HEVC intra-mode method based on VGGNet[J]. Journal of Computers, 2022, 33(4): 57–67. doi: 10.53106/199115992022083304005.
    [15]
    FENG Aolin, GAO Changsheng, LI Li, et al. Cnn-based depth map prediction for fast block partitioning in HEVC intra coding[C]. 2021 IEEE International Conference on Multimedia and Expo (ICME), Shenzhen, China, 2021: 1–6. doi: 10.1109/ICME51207.2021.9428069.
    [16]
    HARI P, JADHAV V, and RAO B K N S. CTU partition for intra-mode HEVC using convolutional neural network[C]. 2022 IEEE International Symposium on Smart Electronic Systems (ISES), Warangal, India, 2022: 548–551. doi: 10.1109/iSES54909.2022.00120.
    [17]
    LORKIEWICZ M, STANKIEWICZ O, DOMANSKI M, et al. Fast selection of INTRA CTU partitioning in HEVC encoders using artificial neural networks[C]. 2021 Signal Processing Symposium (SPSympo), LODZ, Poland, 2021: 177–182. doi: 10.1109/SPSympo51155.2020.9593483.
    [18]
    FENG Zeqi, LIU Pengyu, JIA Kebin, et al. HEVC fast intra coding based CTU depth range prediction[C]. 2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC), Chongqing, China, 2018: 551–555. doi: 10.1109/ICIVC.2018.8492898.
    [19]
    LI Yixiao, LI Lixiang, FANG Yuan, et al. Bagged tree and ResNet-based joint end-to-end fast CTU partition decision algorithm for video intra coding[J]. Electronics, 2022, 11(8): 1264. doi: 10.3390/electronics11081264.
    [20]
    IMEN W, AMNA M, FATMA B, et al. Fast HEVC intra-CU decision partition algorithm with modified LeNet-5 and AlexNet[J]. Signal, Image and Video Processing, 2022, 16(7): 1811–1819. doi: 10.1007/s11760-022-02139-w.
    [21]
    YAO Chao, XU Chenming, and LIU Meiqin. RDNet: Rate–distortion-based coding unit partition network for intra-prediction[J]. Electronics, 2022, 11(6): 916. doi: 10.3390/electronics11060916.
    [22]
    LINCK I, GOMEZ A T, and ALAGHBAND G. CNN quadtree depth decision prediction for block partitioning in HEVC intra-mode[C]. 2023 Data Compression Conference (DCC), Snowbird, USA, 2023: 352. doi: 10.1109/DCC55655.2023.00054.
    [23]
    AMNA M, IMEN W, and EZAHRA S F. Deep learning for intra frame coding[C]. 2021 International Conference on Engineering and Emerging Technologies (ICEET), Istanbul, Turkey, 2021: 1–4. doi: 10.1109/ICEET53442.2021.9659742.
    [24]
    贾克斌, 崔腾鹤, 刘鹏宇, 等. 基于深层特征学习的高效率视频编码中帧内快速预测算法[J]. 电子与信息学报, 2021, 43(7): 2023–2031. doi: 10.11999/JEIT200414.

    JIA Kebin, CUI Tenghe, LIU Pengyu, et al. Fast prediction algorithm in high efficiency video coding intra-mode based on deep feature learning[J]. Journal of Electronics & Information Technology, 2021, 43(7): 2023–2031. doi: 10.11999/JEIT200414.
    [25]
    ZUO Yanchen, GAO Changsheng, LIU Dong, et al. Learned rate-distortion cost prediction for ultrafast screen content intra coding[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(3): 1976–1980. doi: 10.1109/TCSVT.2023.3296515.
    [26]
    WU Yi and CHEN Lei. Fast algorithm for HEVC using frequency-based convolutional neural networks[C]. 2023 3rd International Conference on Electronic Information Engineering and Computer (EIECT), Shenzhen, China, 2023: 559–563. doi: 10.1109/EIECT60552.2023.10442731.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(5)

    Article Metrics

    Article views (108) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return