Citation: | LIU Xiaomin, YU Mengjun, QIAO Zhenzhuang, WANG Haoyu, XING Changda. Scale Adaptive Fusion Network for Multimodal Remote Sensing Data Classification[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3693-3702. doi: 10.11999/JEIT240178 |
[1] |
WANG Leiquan, ZHU Tongchuan, KUMAR N, et al. Attentive-adaptive network for hyperspectral images classification with noisy labels[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5505514. doi: 10.1109/TGRS.2023.3254159.
|
[2] |
HANG Renlong, LI Zhu, GHAMISI P, et al. Classification of hyperspectral and LiDAR data using coupled CNNs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(7): 4939–4950. doi: 10.1109/TGRS.2020.2969024.
|
[3] |
王成龙, 赵倩, 赵琰, 等. 基于深度可分离卷积的实时遥感目标检测算法[J]. 电光与控制, 2022, 29(8): 45–49. doi: 10.3969/j.issn.1671-637X.2022.08.009.
WANG Chenglong, ZHAO Qian, ZHAO Yan, et al. A real-time remote sensing target detection algorithm based on depth separable convolution[J]. Electronics Optics & Control, 2022, 29(8): 45–49. doi: 10.3969/j.issn.1671-637X.2022.08.009.
|
[4] |
AHMAD M, KHAN A M, MAZZARA M, et al. Multi-layer extreme learning machine-based autoencoder for hyperspectral image classification[C]. The 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Prague, Czech, 2019: 75–82. doi: 10.5220/0007258000750082.
|
[5] |
CUI Ying, SHAO Chao, LUO Li, et al. Center weighted convolution and GraphSAGE cooperative network for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5508216. doi: 10.1109/TGRS.2023.3264653.
|
[6] |
LI Mingsong, LI Wei, LIU Yikun, et al. Adaptive mask sampling and manifold to Euclidean subspace learning with distance covariance representation for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5508518. doi: 10.1109/TGRS.2023.3265388.
|
[7] |
OU Xianfeng, WU Meng, TU Bing, et al. Multi-objective unsupervised band selection method for hyperspectral images classification[J]. IEEE Transactions on Image Processing, 2023, 32: 1952–1965. doi: 10.1109/TIP.2023.3258739.
|
[8] |
XUE Zhixiang, TAN Xiong, YU Xuchu, et al. Deep hierarchical vision transformer for hyperspectral and LiDAR data classification[J]. IEEE Transactions on Image Processing, 2022, 31: 3095–3110. doi: 10.1109/TIP.2022.3162964.
|
[9] |
赵伍迪, 李山山, 李安, 等. 结合深度学习的高光谱与多源遥感数据融合分类[J]. 遥感学报, 2021, 25(7): 1489–1502. doi: 10.11834/jrs.20219117.
ZHAO Wudi, LI Shanshan, LI An, et al. Deep fusion of hyperspectral images and multi-source remote sensing data for classification with convolutional neural network[J]. National Remote Sensing Bulletin, 2021, 25(7): 1489–1502. doi: 10.11834/jrs.20219117.
|
[10] |
ZHAO Xudong, ZHANG Mengmeng, TAO Ran, et al. Fractional Fourier image transformer for multimodal remote sensing data classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(2): 2314–2326. doi: 10.1109/TNNLS.2022.3189994.
|
[11] |
ROY S K, DERIA A, HONG Danfeng, et al. Hyperspectral and LiDAR data classification using joint CNNs and morphological feature learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5530416. doi: 10.1109/TGRS.2022.3177633.
|
[12] |
孙强, 陈远. 多层次时空特征自适应集成与特有-共享特征融合的双模态情感识别[J]. 电子与信息学报, 2024, 46(2): 574–587. doi: 10.11999/JEIT231110.
SUN Qiang and CHEN Yuan. Bimodal emotion recognition with adaptive integration of multi-level spatial-temporal features and specific-shared feature fusion[J]. Journal of Electronics & Information Technology. 2024, 46(2): 574–587. doi: 10.11999/JEIT231110.
|
[13] |
雷大江, 杜加浩, 张莉萍, 等. 联合多流融合和多尺度学习的卷积神经网络遥感图像融合方法[J]. 电子与信息学报, 2022, 44(1): 237–244. doi: 10.11999/JEIT200792.
LEI Dajiang, DU Jiahao, ZHANG Liping, et al. Multi-stream architecture and multi-scale convolutional neural network for remote sensing image fusion[J]. Journal of Electronics & Information Technology, 2022, 44(1): 237–244. doi: 10.11999/JEIT200792.
|
[14] |
JIA Sen, ZHAN Zhangwei, ZHANG Meng, et al. Multiple feature-based superpixel-level decision fusion for hyperspectral and LiDAR data classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(2): 1437–1452. doi: 10.1109/TGRS.2020.2996599.
|
[15] |
ZHAO Guangrui, YE Qiaolin, SUN Le, et al. Joint classification of hyperspectral and LiDAR data using a hierarchical CNN and transformer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5500716. doi: 10.1109/TGRS.2022.3232498.
|
[16] |
LI Hengchao, HU Wenshuai, LI Wei, et al. A3 CLNN: Spatial, spectral and multiscale attention ConvLSTM neural network for multisource remote sensing data classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(2): 747–761. doi: 10.1109/TNNLS.2020.3028945.
|
[17] |
ZHANG Mengmeng, LI Wei, ZHANG Yuxiang, et al. Hyperspectral and LiDAR data classification based on structural optimization transmission[J]. IEEE Transactions on Cybernetics, 2023, 53(5): 3153–3164. doi: 10.1109/TCYB.2022.3169773.
|
[18] |
LI Jiaojiao, MA Yinle, SONG Rui, et al. A triplet semisupervised deep network for fusion classification of hyperspectral and LiDAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5540513. doi: 10.1109/TGRS.2022.3213513.
|
[19] |
DONG Wenqian, ZHANG Tian, QU Jiahui, et al. Multibranch feature fusion network with self- and cross-guided attention for hyperspectral and LiDAR classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5530612. doi: 10.1109/TGRS.2022.3179737.
|
[20] |
马梁, 苟于涛, 雷涛, 等. 基于多尺度特征融合的遥感图像小目标检测[J]. 光电工程, 2022, 49(4): 210363. doi: 10.12086/oee.2022.210363.
MA Liang, GOU Yutao, LEI Tao, et al. Small object detection based on multi-scale feature fusion using remote sensing images[J]. Opto-Electronic Engineering, 2022, 49(4): 210363. doi: 10.12086/oee.2022.210363.
|
[21] |
ZHANG Zhongqiang, LIU Danhua, GAO Dahua, et al. A novel spectral-spatial multi-scale network for hyperspectral image classification with the Res2Net block[J]. International Journal of Remote Sensing, 2022, 43(3): 751–777. doi: 10.1080/01431161.2021.2005840.
|
[22] |
XU Kejie, ZHAO Yue, ZHANG Lingming, et al. Spectral–spatial residual graph attention network for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 5509305. doi: 10.1109/LGRS.2021.3111985.
|
[23] |
TAN Xiong and XUE Zhixiang. Spectral-spatial multi-layer perceptron network for hyperspectral image land cover classification[J]. European Journal of Remote Sensing, 2022, 55(1): 409–419. doi: 10.1080/22797254.2022.2087540.
|
[24] |
HONG Danfeng, HAN Zhu, YAO Jing, et al. SpectralFormer: Rethinking hyperspectral Image classification with transformers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5518615. doi: 10.1109/TGRS.2021.3130716.
|
[25] |
HAMILTON W L, YING R, and LESKOVEC J. Inductive representation learning on large graphs[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 1025–1035.
|
[26] |
YU Haoyang, ZHANG Hao, LIU Yao, et al. Dual-channel convolution network with image-based global learning framework for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 6005705. doi: 10.1109/LGRS.2021.3139358.
|
[27] |
ZHAO Xudong, TAO Ran, LI Wei, et al. Joint classification of hyperspectral and LiDAR data using hierarchical random walk and deep CNN architecture[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(10): 7355–7370. doi: 10.1109/TGRS.2020.2982064.
|
[28] |
HONG Danfeng, GAO Lianru, HANG Renlong, et al. Deep encoder–decoder networks for classification of hyperspectral and LiDAR data[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 5500205. doi: 10.1109/LGRS.2020.3017414.
|
[29] |
WU Xin, HONG Danfeng, and CHANUSSOT J. Convolutional neural networks for multimodal remote sensing data classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5517010. doi: 10.1109/TGRS.2021.3124913.
|
[30] |
ZHAO Xudong, TAO Ran, LI Wei, et al. Fractional Gabor convolutional network for multisource remote sensing data classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5503818. doi: 10.1109/TGRS.2021.3065507.
|
[31] |
WANG Haoyu, CHENG Yuhu, LIU Xiaomin, et al. Reinforcement learning based Markov edge decoupled fusion network for fusion classification of hyperspectral and LiDAR[J]. IEEE Transactions on Multimedia, 2024, 26: 7174–7187. doi: 10.1109/TMM.2024.3360717.
|