Citation: | QI Donglian, YAN Weidan, YAN Yunfeng, PENG Jishen, GUO Bingyan. A Review of Research Methods on Event Knowledge Graph for Power Dispatching[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3456-3466. doi: 10.11999/JEIT240167 |
[1] |
张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42(8): 2806–2818. doi: 10.13334/j.0258-8013.pcsee.220467.
ZHANG Zhigang and KANG Chongqing. Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE, 2022, 42(8): 2806–2818. doi: 10.13334/j.0258-8013.pcsee.220467.
|
[2] |
张晓华, 刘道伟, 李柏青, 等. 智能全景系统概念及其在现代电网中的应用体系[J]. 中国电机工程学报, 2019, 39(10): 2885–2894. doi: 10.13334/j.0258-8013.pcsee.182003.
ZHANG Xiaohua, LIU Daowei, LI Baiqing, et al. The concept of intelligent panoramic system and its application system in modern power grid[J]. Proceedings of the CSEE, 2019, 39(10): 2885–2894. doi: 10.13334/j.0258-8013.pcsee.182003.
|
[3] |
程凯强, 周照宇, 曹财云. 人工智能技术在电力调度自动化系统中的应用[J]. 集成电路应用, 2023, 40(4): 248–249. doi: 10.19339/j.issn.1674-2583.2023.04.113.
CHENG Kaiqiang, ZHOU Zhaoyu, and CAO Caiyun. Application of artificial intelligence technology in power dispatching automation system[J]. Applications of IC, 2023, 40(4): 248–249. doi: 10.19339/j.issn.1674-2583.2023.04.113.
|
[4] |
吴旻哲, 张洁华. 电力调度自动化系统应用现状及发展趋势[J]. 产业创新研究, 2023(6): 21–23.
WU Minzhe and ZHANG Jiehua. Current application status and development trends of power dispatch automation systems[J]. Industrial Innovation, 2023(6): 21–23.
|
[5] |
付饶, 袁丁, 刘琦, 等. 人工智能在电力调度自动化系统中的应用[J]. 集成电路应用, 2023, 40(2): 67–69. doi: 10.19339/j.issn.1674-2583.2023.02.024.
FU Rao, YUAN Ding, LIU Qi, et al. Application of artificial intelligence in power dispatching automation system[J]. Applications of IC, 2023, 40(2): 67–69. doi: 10.19339/j.issn.1674-2583.2023.02.024.
|
[6] |
XU Yi, OU Junjie, XU Hui, et al. Temporal knowledge graph reasoning with historical contrastive learning[C]. Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, Washington, USA, 2023: 4765–4773. doi: 10.1609/aaai.v37i4.25601.
|
[7] |
GUAN Saiping, CHENG Xueqi, BAI Long, et al. What is event knowledge graph: A survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(7): 7569–7589. doi: 10.1109/TKDE.2022.3180362.
|
[8] |
闪鑫, 陆晓, 翟明玉, 等. 人工智能应用于电网调控的关键技术分析[J]. 电力系统自动化, 2019, 43(1): 49–57. doi: 10.7500/AEPS20180629002.
SHAN Xin, LU Xiao, ZHAI Mingyu, et al. Analysis of key technologies for artificial intelligence applied to power grid dispatch and control[J]. Automation of Electric Power Systems, 2019, 43(1): 49–57. doi: 10.7500/AEPS201806 29002.
|
[9] |
蒲天骄, 谈元鹏, 彭国政, 等. 电力领域知识图谱的构建与应用[J]. 电网技术, 2021, 45(6): 2080–2091. doi: 10.13335/j.1000-3673.pst.2020.2145.
PU Tianjiao, TAN Yuanpeng, PENG Guozheng, et al. Construction and application of knowledge graph in the electric power field[J]. Power System Technology, 2021, 45(6): 2080–2091. doi: 10.13335/j.1000-3673.pst.2020.2145.
|
[10] |
乔骥, 王新迎, 闵睿, 等. 面向电网调度故障处理的知识图谱框架与关键技术初探[J]. 中国电机工程学报, 2020, 40(18): 5837–5848. doi: 10.13334/j.0258-8013.pcsee.200033.
QIAO Ji, WANG Xinying, MIN Rui, et al. Framework and key technologies of knowledge graph based fault handling system in power Grid[J]. Proceedings of the CSEE, 2020, 40(18): 5837–5848. doi: 10.13334/j.0258-8013.pcsee.200033.
|
[11] |
周帆, 叶健辉, 肖林朋, 等. 基于知识图谱的电网模型本体智能问答系统研究[J]. 中国科技信息, 2019(16): 85–86. doi: 10.3969/j.issn.1001-8972.2019.16.033.
ZHOU Fan, YE Jianhui, XIAO Linpeng, et al. Research on intelligent question answering system of power grid model ontology based on knowledge graph[J]. China Science and Technology Information, 2019(16): 85–86. doi: 10.3969/j.issn.1001-8972.2019.16.033.
|
[12] |
吴小刚, 许士锦, 陈兴望, 等. 基于知识图谱的电网智能调度辅助决策系统设计[J]. 信息技术, 2021(12): 60–65. doi: 10.13274/j.cnki.hdzj.2021.12.011.
WU Xiaogang, XU Shijin, CHEN Xingwang, et al. Design of power grid intelligent dispatching assistant decision system based on knowledge graph[J]. Information Technology, 2021(12): 60–65. doi: 10.13274/j.cnki.hdzj.2021.12.011.
|
[13] |
刘广一, 王继业, 李洋, 等. “电网一张图”时空信息管理系统[J]. 电力信息与通信技术, 2020, 18(1): 7–17. doi: 10.16543/j.2095-641x.electric.power.ict.2020.01.00.
LIU Guangyi, WANG Jiye, LI Yang, et al. "One Graph of Power Grid" spatio-temporal information management system[J]. Electric Power Information and Communication Technology, 2020, 18(1): 7–17. doi: 10.16543/j.2095-641x.electric.power.ict.2020.01.00.
|
[14] |
李文波, 贾嵘, 张怀春, 等. 基于配电网一张图的运营指挥系统研究[J]. 供用电, 2019, 36(11): 48–54. doi: 10.19421/j.cnki.1006-6357.2019.11.007.
LI Wenbo, JIA Rong, ZHANG Huaichun, et al. Research on power equipment quality integrated management system based on graph database[J]. Distribution & Utilization, 2019, 36(11): 48–54. doi: 10.19421/j.cnki.1006-6357.2019.11.007.
|
[15] |
张虹, 景欣, 阮梦宇, 等. 基于知识图谱的交直流大电网断面越限处置策略快速生成方法[J]. 现代电力, 2021, 38(4): 455–464. doi: 10.19725/j.cnki.1007-2322.2020.0392.
ZHANG Hong, JING Xin, RUAN Mengyu, et al. A method of fast eliminating transmission section overload based on knowledge graph in large-scale AC-DC power grids[J]. Modern Electric Power, 2021, 38(4): 455–464. doi: 10.19725/j.cnki.1007-2322.2020.0392.
|
[16] |
刘政昊, 曾曦, 张志剑. 面向应急管理的金融突发事件事理知识图谱构建与分析研究[J]. 信息资源管理学报, 2022, 12(3): 137–151. doi: 10.13365/j.jirm.2022.03.137.
LIU Zhenghao, ZENG Xi, and ZHANG Zhijian. Research on construction and analysis of financial emergencies knowledge graph with event logical for emergency management[J]. Journal of Information Resources Management, 2022, 12(3): 137–151. doi: 10.13365/j.jirm.2022.03.137.
|
[17] |
曾子明, 李青青, 孙守强, 等. 面向突发公共卫生事件网络舆情的事理图谱构建及演化分析[J]. 情报理论与实践, 2023, 46(8): 147–155. doi: 10.16353/j.cnki.1000-7490.2023.08.018.
ZENG Ziming, LI Qingqing, SUN Shouqiang, et al. Construction of the event evolution graph and analysis of evolutionary situation of network public opinion for public health emergencies[J]. Information Studies: Theory & Application, 2023, 46(8): 147–155. doi: 10.16353/j.cnki.1000-7490.2023.08.018.
|
[18] |
张海涛, 李佳玮, 刘伟利, 等. 重大突发事件事理图谱构建研究[J]. 图书情报工作, 2021, 65(18): 133–140. doi: 10.13266/j.issn.0252-3116.2021.18.014.
ZHANG Haitao, LI Jiawei, LIU Weili, et al. Research on the construction of event knowledge graph of major emergencies[J]. Library and Information Service, 2021, 65(18): 133–140. doi: 10.13266/j.issn.0252-3116.2021.18.014.
|
[19] |
GLAVAŠ G and ŠNAJDER J. Event graphs for information retrieval and multi-document summarization[J]. Expert Systems with Applications, 2014, 41(15): 6904–6916. doi: 10.1016/j.eswa.2014.04.004.
|
[20] |
ROSPOCHER M, VAN ERP M, VOSSEN P, et al. Building event-centric knowledge graphs from news[J]. Journal of Web Semantics, 2016, 37/38: 132–151. doi: 10.1016/j.websem.2015.12.004.
|
[21] |
GOTTSCHALK S and DEMIDOVA E. EventKG: A multilingual event-centric temporal knowledge graph[C]. 15th European Semantic Web Conference, Heraklion, Greece, 2018: 272–287. doi: 10.1007/978-3-319-93417-4_18.
|
[22] |
LI Zhongyang, DING Xiao, and LIU Ting. Constructing narrative event evolutionary graph for script event prediction[C]. The 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 2018: 4201–4207.
|
[23] |
DING Xiao, LI Zhongyang, LIU Ting, et al. ELG: An event logic graph[EB/OL]. https://arxiv.org/abs/1907.08015, 2019.
|
[24] |
DENG Jinsheng, QIAO Fengcai, LI Hongying, et al. An overview of event extraction from twitter[C]. The 2015 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, Xi’an, China, 2015: 251–256. doi: 10.1109/CyberC.2015.24.
|
[25] |
肖乐, 岳思雯. 事件抽取技术综述及应用[J]. 软件导刊, 2023, 22(2): 218–224. doi: 10.11907/rjdk.221362.
XIAO Le and YUE Siwen. Overview of event extraction technology and its application[J]. Software Guide, 2023, 22(2): 218–224. doi: 10.11907/rjdk.221362.
|
[26] |
CHEN Yubo, XU Liheng, LIU Kang, et al. Event extraction via dynamic multi-pooling convolutional neural networks[C]. The 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), Beijing, China, 2015: 167–176. doi: 10.3115/v1/P15-1017.
|
[27] |
CHEN Yubo, LIU Shulin, ZHANG Xiang, et al. Automatically labeled data generation for large scale event extraction[C]. The 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Vancouver, Canada, 2017. 409–419. doi: 10.18653/v1/P17-1038.
|
[28] |
SHA Lei, QIAN Feng, CHANG Baobao, et al. Jointly extracting event triggers and arguments by dependency-bridge RNN and tensor-based argument interaction[C]. The Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, USA, 2018. doi: 10.1609/aaai.v32i1.12034.
|
[29] |
NGUYEN T M and NGUYEN T H. One for all: Neural joint modeling of entities and events[C]. The Thirty-Third AAAI Conference on Artificial Intelligence, Honolulu, USA, 2019: 6851–6858. doi: 10.1609/aaai.v33i01.33016851.
|
[30] |
CHEN Yubo, LIU Shulin, HE Shizhu, et al. Event extraction via bidirectional long short-term memory tensor neural networks[C]. The 15th Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data, Yantai, China, 2016: 190–203. doi: 10.1007/978-3-319-47674-2_17.
|
[31] |
YANG Hang, CHEN Yubo, LIU Kang, et al. DCFEE: A document-level Chinese financial event extraction system based on automatically labeled training data[C]. ACL 2018, System Demonstrations, Melbourne, Australia, 2018: 50–55. doi: 10.18653/v1/P18-4009.
|
[32] |
YANG Sen, FENG Dawei, QIAO Linbo, et al. Exploring pre-trained language models for event extraction and generation[C]. The 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 2019: 5284–5294. doi: 10.18653/v1/P19-1522.
|
[33] |
DENG Shumin, ZHANG Ningyu, LI Luoqiu, et al. OntoED: Low-resource event detection with ontology embedding[C/OL]. The 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), 2021: 2828–2839. doi: 10.18653/v1/2021.acl-long.220.
|
[34] |
DU Xinya and CARDIE C. Event extraction by answering (almost) natural questions[C/OL]. The 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2020: 671–683. doi: 10.18653/v1/2020.emnlp-main.49.
|
[35] |
LIU Jian, CHEN Yubo, LIU Kang, et al. Event extraction as machine reading comprehension[C/OL]. The 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2020: 1641–1651. doi: 10.18653/v1/2020.emnlp-main.128.
|
[36] |
NGUYEN T H, CHO K, and GRISHMAN R. Joint event extraction via recurrent neural networks[C]. The 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego, USA, 2016: 300–309. doi: 10.18653/v1/N16-1034.
|
[37] |
LIU Xiao, LUO Zhunchen, and HUANG Heyan. Jointly multiple events extraction via attention-based graph information aggregation[C]. The 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 2018: 1247–1256. doi: 10.18653/v1/D18-1156.
|
[38] |
ZHANG Richong, LI Junpeng, MEI Jiajie, et al. Scalable instance reconstruction in knowledge bases via relatedness affiliated embedding[C]. The 2018 World Wide Web Conference, Lyon, France, 2018: 1185–1194. doi: 10.1145/3178876.3186017.
|
[39] |
GUAN Saiping, JIN Xiaolong, WANG Yuanzhuo, et al. Link prediction on N-ary relational data[C]. The World Wide Web Conference, San Francisco, USA, 2019: 583–593. doi: 10.1145/3308558.3313414.
|
[40] |
GUAN Saiping, JIN Xiaolong, GUO Jiafeng, et al. NeuInfer: Knowledge inference on N-ary facts[C/OL]. The 58th Annual Meeting of the Association for Computational Linguistics, 2020: 6141–6151. doi: 10.18653/v1/2020.acl-main.546.
|
[41] |
CHAMBERS N and JURAFSKY D. Unsupervised learning of narrative event chains[C]. ACL-08: HLT, Columbus, Ohio, 2008: 789–797.
|
[42] |
GRANROTH-WILDING M and CLARK S. What happens next? Event prediction using a compositional neural network model[C]. The Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, USA, 2016. 2727–2733.
|
[43] |
HAN Zhen, WANG Yuyi, MA Yunpu, et al. The graph Hawkes network for reasoning on temporal knowledge graphs[EB/OL]. https://arxiv.org/abs/2003.13432v1, 2020.
|
[44] |
HAWKES A G. Spectra of some self-exciting and mutually exciting point processes[J]. Biometrika, 1971, 58(1): 83–90. doi: 10.1093/biomet/58.1.83.
|
[45] |
JIN W, QU Meng, JIN Xisen, et al. Recurrent event network: Autoregressive structure inferenceover temporal knowledge graphs[C/OL]. The 2020 Conference on Empirical Methods in Natural Language Processing, 2020: 6669–6683. doi: 10.18653/v1/2020.emnlp-main.541.
|