Advanced Search
Turn off MathJax
Article Contents
ZHAO Nan, HUANG Xianggang, DENG Na, ZOU Deyue. Trajectory and Resource Optimization in Energy-Efficient 3D Coverage of Unmanned Aerial Vehicle[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240151
Citation: ZHAO Nan, HUANG Xianggang, DENG Na, ZOU Deyue. Trajectory and Resource Optimization in Energy-Efficient 3D Coverage of Unmanned Aerial Vehicle[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240151

Trajectory and Resource Optimization in Energy-Efficient 3D Coverage of Unmanned Aerial Vehicle

doi: 10.11999/JEIT240151
Funds:  The National Key R&D Program of China (2020YFB1807002), The National Natural Science Foundation of China (62371086, 62271099)
  • Received Date: 2024-03-07
  • Rev Recd Date: 2024-05-14
  • Available Online: 2024-05-22
  • Ubiquitous coverage will become the main form of 6G networks, and complete the deployment in the mountains, hills, deserts and other blind area, to achieve full-area wireless coverage. However, the large-scale deployment of terrestrial base stations in remote areas is extremely difficult. For this reason, combining Unmanned Aerial Vehicle (UAV) communications with Non-Orthogonal Multiple Access (NOMA) technology, an energy-efficient three-dimensional coverage scheme to maximize the energy efficiency of network throughput is proposed in this paper. First, the system model is established and a user pairing algorithm is proposed based on the K-Means algorithm and the Gale-Shapley algorithm. Then, after user pairing is completed, the initial problem is split into two optimization subproblems, which are transformed to convex respectively. Finally, the block coordinate ascent method is used to alternately optimize the UAV trajectory and transmit power to maximize the energy efficiency. Simulation results show that compared with benchmarks, the proposed scheme can significantly improve the throughput energy efficiency of air-ground networks under large-scale wireless coverage.
  • loading
  • [1]
    ZHOU Di, SHENG Min, LI Jiandong, et al. Aerospace integrated networks innovation for empowering 6G: A survey and future challenges[J]. IEEE Communications Surveys & Tutorials, 2023, 25(2): 975–1019. doi: 10.1109/COMST.2023.3245614.
    [2]
    陈新颖, 盛敏, 李博, 等. 面向6G的无人机通信综述[J]. 电子与信息学报, 2022, 44(3): 781–789. doi: 10.11999/JEIT210789.

    CHEN Xinying, SHENG Min, LI Bo, et al. Survey on unmanned aerial vehicle communications for 6G[J]. Journal of Electronics & Information Technology, 2022, 44(3): 781–789. doi: 10.11999/JEIT210789.
    [3]
    许文俊, 张天魁, 赵楠, 等. 无人机通信[M]. 北京: 电子工业出版社, 2023.
    [4]
    AKYILDIZ I F, KAK A, and NIE Shuai. 6G and beyond: The future of wireless communications systems[J]. IEEE Access, 2020, 8: 133995–134030. doi: 10.1109/ACCESS.2020.3010896.
    [5]
    ZHANG Jun, LIANG Fengzhu, LI Bin, et al. Placement optimization of caching UAV-assisted mobile relay maritime communication[J]. China Communications, 2020, 17(8): 209–219. doi: 10.23919/JCC.2020.08.017.
    [6]
    NGUYEN M D, LE Longbao, and GIRARD A. UAV placement and resource allocation for intelligent reflecting surface assisted UAV-based wireless networks[J]. IEEE Communications Letters, 2022, 26(5): 1106–1110. doi: 10.1109/LCOMM.2022.3149467.
    [7]
    LUO Jingjing, SONG Jialun, ZHENG Fuchun, et al. User-centric UAV deployment and content placement in cache-enabled multi-UAV networks[J]. IEEE Transactions on Vehicular Technology, 2022, 71(5): 5656–5660. doi: 10.1109/TVT.2022.3152246.
    [8]
    WU Qingqing, ZENG Yong, and ZHANG Rui. Joint trajectory and communication design for multi-UAV enabled wireless networks[J]. IEEE Transactions on Wireless Communications, 2018, 17(3): 2109–2121. doi: 10.1109/TWC.2017.2789293.
    [9]
    ZHANG Guangchi, WU Qingqing, CUI Miao, et al. Securing UAV communications via joint trajectory and power control[J]. IEEE Transactions on Wireless Communications, 2019, 18(2): 1376–1389. doi: 10.1109/TWC.2019.2892461.
    [10]
    WANG Tianhao, PANG Xiaowei, TANG Jie, et al. Time and energy efficient data collection via UAV[J]. Science China Information Sciences, 2022, 65(8): 182302. doi: 10.1007/s11432-021-3343-7.
    [11]
    CHEN Zhiyong, DING Zhiguo, DAI Xuchu, et al. An optimization perspective of the superiority of NOMA compared to conventional OMA[J]. IEEE Transactions on Signal Processing, 2017, 65(19): 5191–5202. doi: 10.1109/TSP.2017.2725223.
    [12]
    YUE Xinwei, QIN Zhijin, LIU Yuanwei, et al. A unified framework for non-orthogonal multiple access[J]. IEEE Transactions on Communications, 2018, 66(11): 5346–5359. doi: 10.1109/TCOMM.2018.2842217.
    [13]
    CHANG Zheng, LEI Lei, ZHANG Huaqing, et al. Energy-efficient and secure resource allocation for multiple-antenna NOMA with wireless power transfer[J]. IEEE Transactions on Green Communications and Networking, 2018, 2(4): 1059–1071. doi: 10.1109/TGCN.2018.2851603.
    [14]
    LIANG Wei, DING Zhiguo, LI Yonghui, et al. User pairing for downlink non-orthogonal multiple access networks using matching algorithm[J]. IEEE Transactions on Communications, 2017, 65(12): 5319–5332. doi: 10.1109/TCOMM.2017.2744640.
    [15]
    CHEN Xiang, GONG Fengkui, LI Guo, et al. User pairing and pair scheduling in massive MIMO-NOMA systems[J]. IEEE Communications Letters, 2018, 22(4): 788–791. doi: 10.1109/LCOMM.2017.2776206.
    [16]
    PANG Xiaowei, TANG Jie, ZHAO Nan et al. Energy-efficient design for mmWave-enabled NOMA-UAV networks[J]. Science China Information Sciences, 2021, 64(4): 140303. doi: 10.1007/s11432-020-2985-8.
    [17]
    FENG Wanmei, TANG Jie, ZHAO Nan, et al. NOMA-based UAV-aided networks for emergency communications[J]. China Communications, 2020, 17(11): 54–66. doi: 10.23919/JCC.2020.11.005.
    [18]
    LI Yanxin, WANG Wei, LIU Mingqian, et al. Joint trajectory and power optimization for jamming-aided NOMA-UAV secure networks[J]. IEEE Systems Journal, 2023, 17(1): 732–743. doi: 10.1109/JSYST.2022.3155786.
    [19]
    TONG Yuqiao, SHENG Min, LIU Junyu, et al. Energy-efficient UAV-NOMA aided wireless coverage with massive connections[J]. Science China Information Sciences, 2023, 66(12): 222303. doi: 10.1007/s11432-023-3821-3.
    [20]
    AL-HOURANI A, KANDEEPAN S, and LARDNER S. Optimal LAP altitude for maximum coverage[J]. IEEE Wireless Communications Letters, 2014, 3(6): 569–572. doi: 10.1109/LWC.2014.2342736.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (112) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return