Advanced Search
Volume 46 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
HAO Wanming, ZENG Qi, WANG Fang, YANG Shouyi. Active Simultaneously Transmitting and Reflecting Reconfigurable Intelligent Surface Assisted Multi-user Security Communication with Coupled Phase Shift[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3544-3552. doi: 10.11999/JEIT240149
Citation: HAO Wanming, ZENG Qi, WANG Fang, YANG Shouyi. Active Simultaneously Transmitting and Reflecting Reconfigurable Intelligent Surface Assisted Multi-user Security Communication with Coupled Phase Shift[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3544-3552. doi: 10.11999/JEIT240149

Active Simultaneously Transmitting and Reflecting Reconfigurable Intelligent Surface Assisted Multi-user Security Communication with Coupled Phase Shift

doi: 10.11999/JEIT240149
Funds:  The National Natural Science Foundation of China (62101499), The Open Research Fund of National Mobile Communications Research Laboratory, Southeast University (2024D12)
  • Received Date: 2024-03-07
  • Rev Recd Date: 2024-05-14
  • Available Online: 2024-05-24
  • Publish Date: 2024-09-26
  • Passive intelligent reflecting surfaces hold great potential in enhancing wireless communication systems and improving physical layer security, but they suffer from significant drawbacks such as “double fading” and partial coverage. Therefore, an active Simultaneously Transmitting And Reflecting Reconfigurable Intelligent Surface (STAR-RIS) is conducted in this paper. Considering the coupling between reflection and transmission phase shifts, a joint optimization problem for maximizing the security energy efficiency of base station beams and active STAR-RIS beams is formulated. To solve the resulting non-convex optimization problem, continuous convex approximation, penalty function method, semi-definite relaxation, and alternating optimization techniques are employed to transform the original problem into a convex one. Additionally, a penalty dual decomposition algorithm is proposed. Simulation results validate the effectiveness of the algorithm proposed in this paper.
  • loading
  • [1]
    XU Yongjun, GUI Guan, GACANIN H, et al. A survey on resource allocation for 5G heterogeneous networks: Current research, future trends, and challenges[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 668–695. doi: 10.1109/COMST.2021.3059896.
    [2]
    朱政宇, 宁梦珂, 孙钢灿, 等. 智能超表面辅助通信感知一体化系统研究综述[J]. 移动通信, 2023, 47(11): 51–58. doi: 10.3969/j.issn.1006-1010.20230924-0004.

    ZHU Zhengyu, NING Mengke, SUN Gangcan, et al. An overview of reconfigurable intelligent surface-assisted integrated sensing and communications[J]. Mobile Communications, 2023, 47(11): 51–58. doi: 10.3969/j.issn.1006-1010.20230924-0004.
    [3]
    WU Qingqing, ZHANG Shuowen, ZHENG Beixiong, et al. Intelligent reflecting surface-aided wireless communications: A tutorial[J]. IEEE Transactions on Communications, 2021, 69(5): 3313–3351. doi: 10.1109/TCOMM.2021.3051897.
    [4]
    ZHANG Zijian, DAI Linglong, CHEN Xibi, et al. Active RIS vs. passive RIS: Which will prevail in 6G?[J]. IEEE Transactions on Communications, 2023, 71(3): 1707–1725. doi: 10.1109/TCOMM.2022.3231893.
    [5]
    KHOSHAFA M H, NGATCHED T M N, AHMED M H, et al. Active reconfigurable Intelligent surfaces-aided wireless communication system[J]. IEEE Communications Letters, 2021, 25(11): 3699–3703. doi: 10.1109/LCOMM.2021.3110714.
    [6]
    MA Yanan, LI Ming, LIU Yang, et al. Active reconfigurable intelligent surface for energy efficiency in MU-MISO systems[J]. IEEE Transactions on Vehicular Technology, 2023, 72(3): 4103–4107. doi: 10.1109/TVT.2022.3221720.
    [7]
    GAO Ying, WU Qingqing, ZHANG Guangchi, et al. Beamforming optimization for active intelligent reflecting surface-aided SWIPT[J]. IEEE Transactions on Wireless Communications, 2023, 22(1): 362–378. doi: 10.1109/TWC.2022.3193845.
    [8]
    ZHANG Shuhang, ZHANG Hongliang, DI Boya, et al. Beyond intelligent reflecting surfaces: Reflective-transmissive metasurface aided communications for full-dimensional coverage extension[J]. IEEE Transactions on Vehicular Technology, 2020, 69(11): 13905–13909. doi: 10.1109/TVT.2020.3024756.
    [9]
    LIU Yuanwei, MU Xidong, XU Jiaqi, et al. STAR: Simultaneous transmission and reflection for 360° coverage by intelligent surfaces[J]. IEEE Wireless Communications, 2021, 28(6): 102–109. doi: 10.1109/MWC.001.2100191.
    [10]
    LUO Hao, LV Lu, WU Qingqing, et al. Beamforming design for active IOS aided NOMA networks[J]. IEEE Wireless Communications Letters, 2022, 12(2): 282–286. doi: 10.1109/LWC.2022.3223906.
    [11]
    CAI Wenhao, LI Ming, LIU Yang, et al. Joint beamforming design for intelligent Omni surface assisted wireless communication systems[J]. IEEE Transactions on Wireless Communications, 2023, 22(2): 1281–1297. doi: 10.1109/TWC.2022.3203986.
    [12]
    MA Yanan, LI Ming, LIU Yang, et al. Optimization for reflection and transmission dual-functional active RIS-assisted systems[J]. IEEE Transactions on Communications, 2023, 71(9): 5534–5548. doi: 10.1109/TCOMM.2023.3286453.
    [13]
    SHEN Hong, XU Wei, GONG Shulei, et al. Secrecy rate maximization for intelligent reflecting surface assisted multi-antenna communications[J]. IEEE Communications Letters, 2019, 23(9): 1488–1492. doi: 10.1109/LCOMM.2019.2924 214.
    [14]
    CUI Miao, ZHANG Guangchi, and ZHANG Rui. Secure wireless communication via intelligent reflecting surface[J]. IEEE Wireless Communications Letters, 2019, 8(5): 1410–1414. doi: 10.1109/LWC.2019.2919685.
    [15]
    DONG Limeng and WANG Huiming. Enhancing secure MIMO transmission via intelligent reflecting surface[J]. IEEE Transactions on Wireless Communications, 2020, 19(11): 7543–7556. doi: 10.1109/TWC.2020.3012721.
    [16]
    NIU Hehao, CHU Zheng, ZHOU Fuhui, et al. Weighted sum secrecy rate maximization using intelligent reflecting surface[J]. IEEE Transactions on Communications, 2021, 69(9): 6170–6184. doi: 10.1109/TCOMM.2021.3085780.
    [17]
    DONG Limeng, WANG Huiming, and BAI Jiale. Active reconfigurable intelligent surface aided secure transmission[J]. IEEE Transactions on Vehicular Technology, 2022, 71(2): 2181–2186. doi: 10.1109/TVT.2021.3135498.
    [18]
    DONG Limeng and YAN Wanyu. Active reconfigurable intelligent surface (RIS) aided secure wireless transmission under a shared power source between transmitter and RIS[C]. 2022 14th International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 2022: 996–1000. doi: 10.1109/WCSP55476.2022.10039260.
    [19]
    NIU Hehao, CHU Zheng, ZHOU Fuhui, et al. Simultaneous transmission and reflection reconfigurable intelligent surface assisted secrecy MISO networks[J]. IEEE Communications Letters, 2021, 25(11): 3498–3502. doi: 10.1109/LCOMM.2021.3109164.
    [20]
    LI Xingwang, ZHENG Yike, ZENG Ming, et al. Enhancing secrecy performance for STAR-RIS NOMA networks[J]. IEEE Transactions on Vehicular Technology, 2023, 72(2): 2684–2688. doi: 10.1109/TVT.2022.3213334.
    [21]
    GUO Yuan, LIU Yang, WU Qingqing, et al. Enhanced secure communication via novel double-faced active RIS[J]. IEEE Transactions on Communications, 2023, 71(6): 3497–3512. doi: 10.1109/TCOMM.2023.3250454.
    [22]
    LIU Yuanwei, MU Xidong, SCHOBER R, et al. Simultaneously transmitting and reflecting (STAR)-RISs: A coupled phase-shift model[C]. ICC 2022-IEEE International Conference on Communications, Seoul, Republic of Korea, 2022: 2840–2845. doi: 10.1109/ICC45855.2022.9838767.
    [23]
    WANG Zhaolin, MU Xidong, LIU Yuanwei, et al. Coupled phase-shift STAR-RISs: A general optimization framework[J]. IEEE Wireless Communications Letters, 2023, 12(2): 207–211. doi: 10.1109/LWC.2022.3219020.
    [24]
    ZHANG Zheng, WANG Zhaolin, LIU Yuanwei, et al. Security enhancement for coupled phase-shift STAR-RIS networks[J]. IEEE Transactions on Vehicular Technology, 2023, 72(6): 8210–8215. doi: 10.1109/TVT.2023.3243545.
    [25]
    ZHAO Nan, LI Dongdong, LIU Minqian, et al. Secure transmission via joint precoding optimization for downlink MISO NOMA[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8): 7603–7615. doi: 10.1109/TVT.2019.2920144.
    [26]
    徐勇军, 徐然, 周继华, 等. 基于用户窃听的MU-MISO反向散射通信系统鲁棒资源分配算法[J]. 电子与信息学报, 2024, 46(1): 204–212. doi: 10.11999/JEIT221508.

    XU Yongjun, XU Ran, ZHOU Jihua, et al. Robust resource allocation algorithm in MU-MISO backscatter communication systems with eavesdroppers[J]. Journal of Electronics & Information Technology, 2024, 46(1): 204–212. doi: 10.11999/JEIT221508.
    [27]
    ZHAO Nan, LI Yanxin, ZHANG Shun, et al. Security enhancement for NOMA-UAV networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 3994–4005. doi: 10.1109/TVT.2020.2972617.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (306) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return