Advanced Search
Volume 46 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
ZHANG Zufan, LIU Jian, ZHANG Chenlu. Beamforming Design for IRS-assisted D2D Communication System Under Urban Street Scenarios[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3571-3582. doi: 10.11999/JEIT240112
Citation: ZHANG Zufan, LIU Jian, ZHANG Chenlu. Beamforming Design for IRS-assisted D2D Communication System Under Urban Street Scenarios[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3571-3582. doi: 10.11999/JEIT240112

Beamforming Design for IRS-assisted D2D Communication System Under Urban Street Scenarios

doi: 10.11999/JEIT240112
Funds:  The National Natural Science Foundation of China (62202077), The Youth Project of Science and Technology Research Program of Chongqing Municipal Education Commission, China (KJQN0202200609)
  • Received Date: 2024-02-28
  • Rev Recd Date: 2024-08-23
  • Available Online: 2024-08-31
  • Publish Date: 2024-09-26
  • Considering the spectrum sharing between cellular users and D2D users, and the wireless channel characteristic of urban streets, an Intelligent Reflecting Surface (IRS)-assisted joint beamforming method is proposed. Under the constraints of signal to interference plus noise ratio for D2D link, the parameter including optimal beamforming vectors and phase-shift matrices and D2D transmitting powers are designed with the objective of maximizing cellular user capacity. The nonconvex coupling variable optimization problem is transformed into the convex decoupling variable optimization problem and binary search power allocation by introducing slack variables, and the reflection phase-shift matrices are also optimized with Riemann conjugate gradient algorithms. Simulation results show that the proposed algorithm has perfect convergence and higher user channel capacity comparing with the baseline schemes.
  • loading
  • [1]
    AGIWAL M, ROY A, and SAXENA N. Next generation 5G wireless networks: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2016, 18(3): 1617–1655. doi: 10.1109/COMST.2016.2532458.
    [2]
    ZHANG Lin, XIAO Ming, WU Gang, et al. Efficient scheduling and power allocation for D2D-assisted wireless caching networks[J]. IEEE Transactions on Communications, 2016, 64(6): 2438–2452. doi: 10.1109/TCOMM.2016.2552164.
    [3]
    LIANG Le, LI G Y, and XU Wei. Resource allocation for D2D-enabled vehicular communications[J]. IEEE Transactions on Communications, 2017, 65(7): 3186–3197. doi: 10.1109/TCOMM.2017.2699194.
    [4]
    申滨, 孙万平, 张楠, 等. 基于加权二部图及贪婪策略的蜂窝网络D2D通信资源分配[J]. 电子与信息学报, 2023, 45(3): 1055–1064. doi: 10.11999/JEIT220029.

    SHEN Bin, SUN Wanping, ZHANG Nan, et al. Resource allocation based on weighted bipartite graph and greedy strategy for D2D communication in cellular networks[J]. Journal of Electronics & Information Technology, 2023, 45(3): 1055–1064. doi: 10.11999/JEIT220029.
    [5]
    STRINATI E C, ALEXANDROPOULOS G C, WYMEERSCH H, et al. Reconfigurable, intelligent, and sustainable wireless environments for 6G smart connectivity[J]. IEEE Communications Magazine, 2021, 59(10): 99–105. doi: 10.1109/MCOM.001.2100070.
    [6]
    NING Boyu, TIAN Zhongbao, MEI Weidong, et al. Beamforming technologies for ultra-massive MIMO in terahertz communications[J]. IEEE Open Journal of the Communications Society, 2023, 4: 614–658. doi: 10.1109/OJCOMS.2023.3245669.
    [7]
    GAO Ying, WU Qingqing, ZHANG Guangchi, et al. Beamforming optimization for active intelligent reflecting surface-aided SWIPT[J]. IEEE Transactions on Wireless Communications, 2023, 22(1): 362–378. doi: 10.1109/TWC.2022.3193845.
    [8]
    WANG Zhaorui, LIU Liang, ZHANG Shuowen, et al. Massive MIMO communication with intelligent reflecting surface[J]. IEEE Transactions on Wireless Communications, 2023, 22(4): 2566–2582. doi: 10.1109/TWC.2022.3212537.
    [9]
    JIA Shuaiqi, YUAN Xiaojun, and LIANG Yingchang. Reconfigurable intelligent surfaces for energy efficiency in D2D communication network[J]. IEEE Wireless Communications Letters, 2021, 10(3): 683–687. doi: 10.1109/LWC.2020.3046358.
    [10]
    NI Yiyang, LIU Yaxuan, WANG Jue, et al. Performance analysis for RIS-assisted D2D communication under Nakagami-m fading[J]. IEEE Transactions on Vehicular Technology, 2021, 70(6): 5865–5879. doi: 10.1109/TVT.2021.3077805.
    [11]
    WANG Wenhao, YANG Lei, MENG Anqi, et al. Resource allocation for IRS-aided JP-CoMP downlink cellular networks with underlaying D2D communications[J]. IEEE Transactions on Wireless Communications, 2022, 21(6): 4295–4309. doi: 10.1109/TWC.2021.3128711.
    [12]
    CHEN Yuanbin, WANG Ying, ZHANG Jiayi, et al. Resource allocation for Intelligent reflecting surface aided vehicular communications[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 12321–12326. doi: 10.1109/TVT.2020.3010252.
    [13]
    张雷, 王玉, 田建杰, 等. 基于IRS辅助的MIMO车联网系统联合波束成形设计[J]. 通信学报, 2023, 44(2): 59–69. doi: 10.11959/j.issn.1000-436x.2023035.

    ZHANG Lei, WANG Yu, TIAN Jianjie, et al. Joint beam forming design for IRS-aided MIMO Internet of vehicles system[J]. Journal on Communications, 2023, 44(2): 59–69. doi: 10.11959/j.issn.1000-436x.2023035.
    [14]
    ERCEG V, SCHILLING D L, GHASSEMZADEH S, et al. Propagation modeling and measurements in an urban and suburban environment using broadband direct sequence spread spectrum[C]. [1992 Proceedings] Vehicular Technology Society 42nd VTS Conference-Frontiers of Technology, Denver, USA, 1992: 317–320. doi: 10.1109/VETEC.1992.245414.
    [15]
    ERCEG V, RUSTAKO A J, and ROMAN R S. Diffraction around corners and its effects on the microcell coverage area in urban and suburban environments at 900 MHz, 2 GHz, and 4 GHz[J]. IEEE Transactions on Vehicular Technology, 1994, 43(3): 762–766. doi: 10.1109/25.312770.
    [16]
    MASUI H, ISHII M, SAKAWA K, et al. Microwave path-loss characteristics in urban LOS and NLOS environments[C]. IEEE VTS 53rd Vehicular Technology Conference, Spring 2001. Proceedings (Cat. No. 01CH37202), Rhodes, Greece, 2001: 395–398. doi: 10.1109/VETECS.2001.944872.
    [17]
    LU J S, BERTONI H L, REMLEY K A, et al. Site-specific models of the received power for radio communication in urban street canyons[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(4): 2192–2200. doi: 10.1109/TAP.2013.2297164.
    [18]
    MATOLAK D W, ZHANG Qian, and WU Qiong. Path loss in an urban peer-to-peer channel for six public-safety frequency bands[J]. IEEE Wireless Communications Letters, 2013, 2(3): 263–266. doi: 10.1109/WCL.2013.020513.120919.
    [19]
    MATOLAK D W, REMLEY K A, GENTILE C, et al. Peer-to-peer urban channel characteristics for two public-safety frequency bands[J]. IEEE Antennas and Propagation Magazine, 2014, 56(5): 101–115. doi: 10.1109/MAP.2014.6971921.
    [20]
    ZHAO Xiongwen, COULIBALY B M, LIANG Xiaolin, et al. Comparisons of channel parameters and models for urban microcells at 2 GHz and 5 GHz [wireless corner][J]. IEEE Antennas and Propagation Magazine, 2014, 56(6): 260–276. doi: 10.1109/MAP.2014.7011070.
    [21]
    KIM K W and OH S J. Geometric optics-based propagation prediction model in urban street canyon environments[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 1128–1131. doi: 10.1109/LAWP.2015.2496182.
    [22]
    WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/MCOM.001.1900107.
    [23]
    ITU. Propagation data and prediction methods for the planning of short-range outdoor radiocommunication systems and radio local area networks in the frequency range 300 MHz to 100 GHz[R]. Recommendation P. 1411-7, 2013.
    [24]
    ZHANG Shuowen and ZHANG Rui. Capacity characterization for intelligent reflecting surface aided MIMO communication[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1823–1838. doi: 10.1109/JSAC.2020.3000814.
    [25]
    LI Renweng, SUN Shu, and TAO Meixia. Ergodic achievable rate maximization of RIS-assisted millimeter-wave MIMO-OFDM communication systems[J]. IEEE Transactions on Wireless Communications, 2023, 22(3): 2171–2184. doi: 10.1109/TWC.2022.3210227.
    [26]
    ABSIL P A, MAHONY R, and SEPULCHRE R. Optimization Algorithms on Matrix Manifolds[M]. Princeton: Princeton University Press, 2008: 231–232. doi: 10.1515/9781400830244.
    [27]
    GUTIÉRREZ-RUIZ D, GONZALEZ D, CHÁVEZ-CARLOS J, et al. Quantum geometric tensor and quantum phase transitions in the Lipkin-Meshkov-Glick model[J]. Physical Review B, 2021, 103(17): 174104. doi: 10.1103/PhysRevB.103.174104.
    [28]
    MUNKRES J. Algorithms for the assignment and transportation problems[J]. Journal of the Society for Industrial and Applied Mathematics, 1957, 5(1): 32–38. doi: 10.1137/0105003.
    [29]
    YU Xianghao, XU Dongfang, and SCHOBER R. MISO wireless communication systems via intelligent reflecting surfaces: (Invited paper)[C]. 2019 IEEE/CIC International Conference on Communications in China (ICCC), Changchun, China, 2019: 735–740. doi: 10.1109/ICCChina.2019.8855810.
    [30]
    SUN Ruijin, CHENG Nan, ZHANG Ran, et al. Sum-rate maximization in IRS-assisted wireless-powered multiuser MIMO networks with practical phase shift[J]. IEEE Internet of Things Journal, 2023, 10(5): 4292–4306. doi: 10.1109/JIOT.2022.3216449.
    [31]
    KUDATHANTHIRIGE D, GUNASINGHE D, and AMARASURIYA G. Performance analysis of intelligent reflective surfaces for wireless communication[C]. ICC 2020–2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 2020: 1–6. doi: 10.1109/ICC40277.2020.9148760.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article Metrics

    Article views (189) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return