Citation: | HAN Jingyu, WANG Yanzhi, CHEN Jin, YAN Xinxin, ZHANG Yiting. A Mobile-Side-Dominant Method for Querying Present and Future Velocity on Urban Roads[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3722-3730. doi: 10.11999/JEIT240102 |
[1] |
PELANIS M, ŠALTENIS S, and JENSEN C S. Indexing the past, present, and anticipated future positions of moving objects[J]. ACM Transactions on Database Systems, 2006, 31(1): 255–298. doi: 10.1145/1132863.1132870.
|
[2] |
PFOSER D, BRAKATSOULAS S, BROSCH P, et al. Dynamic travel time provision for road networks[C]. The 16th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Irvine, USA, 2008: 68. doi: 10.1145/1463434.1463513.
|
[3] |
CHANG Jundong. Spatial-temporal based traffic speed imputation for GPS probe vehicles[C]. The Fifth International Conference on Network, Communication and Computing, Kyoto, Japan, 2016: 326–330. doi: 10.1145/3033288.3033339.
|
[4] |
CHEN Rongsheng and LEVIN M W. Traffic state estimation based on Kalman filter technique using connected vehicle V2V basic safety messages[C]. 2019 IEEE Intelligent Transportation Systems Conference, Auckland, New Zealand, 2019: 4380–4385. doi: 10.1109/ITSC.2019.8917343.
|
[5] |
崔艳玲, 金蓓弘, 张扶桑. 基于数据融合的高速公路交通状况检测[J]. 计算机学报, 2017, 40(8): 1798–1812. doi: 10.11897/SP.J.1016.2017.01798.
CUI Yanling, JIN Beihong, and ZHANG Fusang. Highway traffic condition detection with data fusion[J]. Chinese Journal of Computers, 2017, 40(8): 1798–1812. doi: 10.11897/SP.J.1016.2017.01798.
|
[6] |
BEI Pan, DEMIRYUREK U, and SHAHABI C. Utilizing real-world transportation data for accurate traffic prediction[C]. IEEE 12th International Conference on Data Mining, Brussels, Belgium, 2012: 595–604. doi: 10.1109/ICDM.2012.52.
|
[7] |
HE Zhixiang, CHOW C Y, and ZHANG Jiadong. STCNN: A spatio-temporal convolutional neural network for long-term traffic prediction[C]. The 20th IEEE International Conference on Mobile Data Management, Hong Kong, China, 2019: 226–233. doi: 10.1109/MDM.2019.00-53.
|
[8] |
TANG Keshuang, CHEN Siqu, CAO Yumin, et al. Short-term travel speed prediction for urban expressways: Hybrid convolutional neural network models[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(3): 1829–1840. doi: 10.1109/TITS.2020.3027628.
|
[9] |
TONG Guan, PENG Jiaheng, and LIANG Jun. Spatial-temporal graph multi-gate mixture-of-expert model for traffic prediction[C]. IEEE 26th International Conference on Intelligent Transportation Systems, Bilbao, Spain, 2023: 36–41. doi: 10.1109/ITSC57777.2023.10422031.
|
[10] |
LI Maosen, CHEN Siheng, SHEN Yanning, et al. Online multi-agent forecasting with interpretable collaborative graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(4): 4768–4782. doi: 10.1109/tnnls.2022.3152251.
|
[11] |
岳猛, 王怀远, 吴志军, 等. 云计算中DDoS攻防技术研究综述[J]. 计算机学报, 2020, 43(12): 2315–2336. doi: 10.11897/SP.J.1016.2020.02315.
YUE Meng, WANG Huaiyuan, WU Zhijun, et al. A survey of DDoS attack and defense technologies in cloud computing[J]. Chinese Journal of Computers, 2020, 43(12): 2315–2336. doi: 10.11897/SP.J.1016.2020.02315.
|
[12] |
QI Bozhao, KANG Lei, and BANERJEE S. A vehicle-based edge computing platform for transit and human mobility analytics[C]. The Second ACM/IEEE Symposium on Edge Computing, San Jose, USA, 2017: 1. doi: 10.1145/3132211.3134446.
|
[13] |
吴洪越, 陈志伟, 石博文, 等. 一种面向边缘计算环境的去中心化服务请求分发方法[J]. 计算机学报, 2023, 46(5): 987–1002. doi: 10.11897/SP.J.1016.2023.00987.
WU Hongyue, CHEN Zhiwei, SHI Bowen, et al. Decentralized service request dispatching for edge computing systems[J]. Chinese Journal of Computers, 2023, 46(5): 987–1002. doi: 10.11897/SP.J.1016.2023.00987.
|
[14] |
张晓东, 张朝昆, 赵继军. 边缘智能研究进展[J]. 计算机研究与发展, 2023, 60(12): 2749–2769. doi: 10.7544/issn1000-1239.202220192.
ZHANG Xiaodong, ZHANG Chaokun, and ZHAO Jijun. State-of-the-art survey on edge intelligence[J]. Journal of Computer Research and Development, 2023, 60(12): 2749–2769. doi: 10.7544/issn1000-1239.202220192.
|
[15] |
WANG Tian, LUO Hao, ZHENG Xi, et al. Crowdsourcing mechanism for trust evaluation in CPCS based on intelligent mobile edge computing[J]. ACM Transactions on Intelligent Systems and Technology, 2019, 10(6): 62. doi: 10.1145/3324926.
|
[16] |
FELDMAN M, LAI K, STOICA I, et al. May. Robust incentive techniques for peer-to-peer networks[C]. The 5th ACM Conference on Electronic Commerce, New York, USA, 2004: 102–111. doi: 10.1145/988772.988788.
|
[17] |
陈山枝, 葛雨明, 时岩. 蜂窝车联网(C-V2X)技术发展、应用及展望[J]. 电信科学, 2022, 38(1): 1–12. doi: 10.11959/j.issn.1000-0801.2022007.
CHEN Shanzhi, GE Yuming, and SHI Yan. Technology development, application and prospect of cellular vehicle-to-everything (C-V2X)[J]. Telecommunications Science, 2022, 38(1): 1–12. doi: 10.11959/j.issn.1000-0801.2022007.
|
[18] |
HOCHREITER S and SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735–1780. doi: 10.1162/neco.1997.9.8.1735.
|
[19] |
RAMSAK F, MARKL V, FENK R, et al. Integrating the UB-tree into a database system kernel[C]. The 26th International Conference on Very Large Data Bases, Cairo, Egypt, 2000: 263–272.
|
[20] |
NIELSEN F. On a generalization of the Jensen–Shannon divergence and the Jensen–Shannon centroid[J]. Entropy, 2020, 22(2): 221. doi: 10.3390/e22020221.
|
[21] |
MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]. The 20th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, USA, 2017: 1273–1282.
|