Citation: | YANG Hongyu, SONG Chengyu, WANG Peng, ZHAO Yongkang, HU Ze, CHENG Xiang, ZHANG Liang. Website Fingerprinting Attacks and Defenses on Tor: A Survey[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3474-3489. doi: 10.11999/JEIT240091 |
[1] |
DINGLEDINE R, MATHEWSON N, and SYVERSON P F. Tor: The second-generation onion router[C]. The 13th USENIX Security Symposium, San Diego, USA, 2004: 303–320.
|
[2] |
KARUNANAYAKE I, AHMED N, MALANEY R, et al. De-anonymisation attacks on Tor: A survey[J]. IEEE Communications Surveys & Tutorials, 2021, 23(4): 2324–2350. doi: 10.1109/COMST.2021.3093615.
|
[3] |
孙学良, 黄安欣, 罗夏朴, 等. 针对Tor的网页指纹识别研究综述[J]. 计算机研究与发展, 2021, 58(8): 1773–1788. doi: 10.7544/issn1000-1239.2021.20200498.
SUN Xueliang, HUANG Anxin, LUO Xiapu, et al. Webpage fingerprinting identification on Tor: A survey[J]. Journal of Computer Research and Development, 2021, 58(8): 1773–1788. doi: 10.7544/issn1000-1239.2021.20200498.
|
[4] |
邹鸿程, 苏金树, 魏子令, 等. 网站指纹识别与防御研究综述[J]. 计算机学报, 2022, 45(10): 2243–2278. doi: 10.11897/SP.J.1016.2022.02243.
ZOU Hongcheng, SU Jinshu, WEI Ziling, et al. A review of the research of website fingerprinting identification and defense[J]. Chinese Journal of Computers, 2022, 45(10): 2243–2278. doi: 10.11897/SP.J.1016.2022.02243.
|
[5] |
SHEN Meng, YE Ke, LIU Xingtong, et al. Machine learning-powered encrypted network traffic analysis: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2023, 25(1): 791–824. doi: 10.1109/COMST.2022.3208196.
|
[6] |
WAGNER D and SCHNEIER B. Analysis of the SSL 3.0 protocol[C]. The 2nd USENIX Workshop on Electronic Commerce, Oakland, USA, 1996: 4. doi: 10.5555/1267167.1267171.
|
[7] |
HINTZ A. Fingerprinting websites using traffic analysis[C]. The 2nd International Workshop on Privacy Enhancing Technologies, San Francisco, USA, 2003: 171–178. doi: 10.1007/3-540-36467-6_13.
|
[8] |
LIBERATORE M and LEVINE B N. Inferring the source of encrypted HTTP connections[C]. The 13th ACM Conference on Computer and Communications Security, Alexandria, USA, 2006: 255–263. doi: 10.1145/1180405.1180437.
|
[9] |
BISSIAS G D, LIBERATORE M, JENSEN D, et al. Privacy vulnerabilities in encrypted HTTP streams[C]. The 5th International Workshop on Privacy Enhancing Technologies, Cavtat, Croatia, 2006: 1–11. doi: 10.1007/11767831_1.
|
[10] |
HERRMANN D, WENDOLSKY R, and FEDERRATH H. Website fingerprinting: Attacking popular privacy enhancing technologies with the multinomial naïve-Bayes classifier[C]. The ACM Workshop on Cloud Computing Security, Chicago, USA, 2009: 31–42. doi: 10.1145/1655008.1655013.
|
[11] |
PANCHENKO A, NIESSEN L, ZINNEN A, et al. Website fingerprinting in onion routing based anonymization networks[C]. The 10th Annual ACM Workshop on Privacy in the Electronic Society, Chicago, USA, 2011: 103–114. doi: 10.1145/2046556.2046570.
|
[12] |
WANG Tao and GOLDBERG I. Improved website fingerprinting on tor[C]. The 12th ACM Workshop on Privacy in the Electronic Society, Berlin, Germany, 2013: 201–212. doi: 10.1145/2517840.2517851.
|
[13] |
SIRINAM P, IMANI M, JUAREZ M, et al. Deep fingerprinting: Undermining website fingerprinting defenses with deep learning[C]. The 2018 ACM SIGSAC Conference on Computer and Communications Security, Toronto, Canada, 2018: 1928–1943. doi: 10.1145/3243734.3243768.
|
[14] |
GONG Jiajun and WANG Tao. Zero-delay lightweight defenses against website fingerprinting[C]. The 29th USENIX Conference on Security Symposium, Berkley, USA, 2020: 41. doi: 10.5555/3489212.3489253.
|
[15] |
CAI Xiang, ZHANG Xincheng, JOSHI B, et al. Touching from a distance: Website fingerprinting attacks and defenses[C]. The ACM Conference on Computer and Communications Security, Raleigh, USA, 2012: 605–616. doi: 10.1145/2382196.2382260.
|
[16] |
JAHANI H and JALILI S. A novel passive website fingerprinting attack on tor using fast Fourier transform[J]. Computer Communications, 2016, 96: 43–51. doi: 10.1016/j.comcom.2016.05.019.
|
[17] |
PANCHENKO A, LANZE F, PENNEKAMP J, et al. Website fingerprinting at internet scale[C]. The 23rd Annual Network and Distributed System Security Symposium, San Diego, USA, 2016: 1–15.
|
[18] |
WANG Tao, CAI Xiang, NITHYANAND R, et al. Effective attacks and provable defenses for website fingerprinting[C]. The 23rd USENIX Conference on Security Symposium, San Diego, USA, 2014: 143–157. doi: 10.5555/2671225.2671235.
|
[19] |
HAYES J and DANEZIS G. K-fingerprinting: A robust scalable website fingerprinting technique[C]. The 25th USENIX Conference on Security Symposium, Austin, USA, 2016: 1187–1203. doi: 10.5555/3241094.3241186.
|
[20] |
DYER K P, COULL S E, RISTENPART T, et al. Peek-a-boo, I still see you: Why efficient traffic analysis countermeasures fail[C]. The IEEE Symposium on Security and Privacy, San Francisco, USA, 2012: 332–346. doi: 10.1109/SP.2012.28.
|
[21] |
CHANG C C and LIN C J. LIBSVM: A library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): 27. doi: 10.1145/1961189.1961199.
|
[22] |
SHEN Meng, LIU Yiting, ZHU Liehuang, et al. Optimizing feature selection for efficient encrypted traffic classification: A systematic approach[J]. IEEE Network, 2020, 34(4): 20–27. doi: 10.1109/MNET.011.1900366.
|
[23] |
ABE K and GOTO S. Fingerprinting attack on Tor anonymity using deep learning[J]. Proceedings of the Asia-Pacific Advanced Network, Hongkong, China, 2016, 42: 15–20.
|
[24] |
RIMMER V, PREUVENEERS D, JUAREZ M, et al. Automated website fingerprinting through deep learning[C]. The 25th Network and Distributed System Security Symposium, San Diego, USA, 2018.
|
[25] |
OH S E, SUNKAM S, and HOPPER N. p1-FP: Extraction, classification, and prediction of website fingerprints with deep learning[J]. Proceedings on Privacy Enhancing Technologies, 2019, 2019(3): 191–209. doi: 10.2478/popets-2019-0043.
|
[26] |
BHAT S, LU D, KWON A, et al. Var-CNN: A data-efficient website fingerprinting attack based on deep learning[J]. Proceedings on Privacy Enhancing Technologies, 2019, 2019(4): 292–310. doi: 10.2478/popets-2019-0070.
|
[27] |
RAHMAN M S, SIRINAM P, MATHEWS N, et al. Tik-Tok: The utility of packet timing in website fingerprinting attacks[J]. Proceedings on Privacy Enhancing Technologies, 2020, 2020(3): 5–24. doi: 10.2478/popets-2020-0043.
|
[28] |
马陈城, 杜学绘, 曹利峰, 等. 基于深度神经网络burst特征分析的网站指纹攻击方法[J]. 计算机研究与发展, 2020, 57(4): 746–766. doi: 10.7544/issn1000-1239.2020.20190860.
MA Chencheng, DU Xuehui, CAO Lifeng, et al. Burst-analysis website fingerprinting attack based on deep neural network[J]. Journal of Computer Research and Development, 2020, 57(4): 746–766. doi: 10.7544/issn1000-1239.2020.20190860.
|
[29] |
WANG Meiqi, LI Yanzeng, WANG Xuebin, et al. 2ch-TCN: A website fingerprinting attack over tor using 2-channel temporal convolutional networks[C]. The IEEE Symposium on Computers and Communications, Rennes, France, 2020: 1–7. doi: 10.1109/ISCC50000.2020.9219717.
|
[30] |
ZHOU Qiang, WANG Liangmin, ZHU Huijuan, et al. WF-transformer: Learning temporal features for accurate anonymous traffic identification by using transformer networks[J]. IEEE Transactions on Information Forensics and Security, 2024, 19: 30–43. doi: 10.1109/TIFS.2023.3318966.
|
[31] |
HE Xiaomin, WANG Jin, HE Yueying, et al. A deep learning approach for website fingerprinting attack[C]. The 4th International Conference on Computer and Communications, Chengdu, China, 2018: 1419–1423. doi: 10.1109/CompComm.2018.8780755.
|
[32] |
XU Yixiao, WANG Tao, LI Qi, et al. A multi-tab website fingerprinting attack[C]. The 34th Annual Computer Security Applications Conference, San Juan, USA, 2018: 327–341. doi: 10.1145/3274694.3274697.
|
[33] |
YIN Qilei, LIU Zhuotao, LI Qi, et al. An automated multi-tab website fingerprinting attack[J]. IEEE Transactions on Dependable and Secure Computing, 2022, 19(6): 3656–3670. doi: 10.1109/TDSC.2021.3104869.
|
[34] |
GU Xiaodan, YANG Ming, SONG Bingchen, et al. A practical multi-tab website fingerprinting attack[J]. Journal of Information Security and Applications, 2023, 79: 103627. doi: 10.1016/j.jisa.2023.103627.
|
[35] |
DENG Xinhao, YIN Qilei, LIU Zhuotao, et al. Robust multi-tab website fingerprinting attacks in the wild[C]. 2023 IEEE Symposium on Security and Privacy, San Francisco, USA, 2023: 1005–1022. doi: 10.1109/SP46215.2023.10179464.
|
[36] |
WANG Tao and GOLDBERG I. On realistically attacking tor with website fingerprinting[J]. Proceedings on Privacy Enhancing Technologies, 2016, 2016(4): 21–36. doi: 10.1515/popets-2016-0027.
|
[37] |
JUAREZ M, IMANI M, PERRY M, et al. Toward an efficient website fingerprinting defense[C]. The 21st European Symposium on Research in Computer Security, Heraklion, Greece, 2016: 27–46. doi: 10.1007/978-3-319-45744-4_2.
|
[38] |
HONG Xueshu, MA Xingkong, LI Shaoyong, et al. A website fingerprint defense technology with low delay and controllable bandwidth[J]. Computer Communications, 2022, 193: 332–345. doi: 10.1016/j.comcom.2022.06.028.
|
[39] |
LIU Peidong, HE Longtao, and LI Zhoujun. A survey on deep learning for website fingerprinting attacks and defenses[J]. IEEE Access, 2023, 11: 26033–26047. doi: 10.1109/ACCESS.2023.3253559.
|
[40] |
CAI Xiang, NITHYANAND R, and JOHNSON R. CS-BuFLO: A congestion sensitive website fingerprinting defense[C]. The 13th Workshop on Privacy in the Electronic Society, Scottsdale, USA, 2014: 121–130. doi: 10.1145/2665943.2665949.
|
[41] |
CAI Xiang, NITHYANAND R, WANG Tao, et al. A systematic approach to developing and evaluating website fingerprinting defenses[C]. The 2014 ACM SIGSAC Conference on Computer and Communications Security, Scottsdale, USA, 2014: 227–238. doi: 10.1145/2660267.2660362.
|
[42] |
WANG Tao and GOLDBERG I. Walkie-talkie: An efficient defense against passive website fingerprinting attacks[C]. The 26th USENIX Conference on Security Symposium, Vancouver, Canada, 2017: 1375–1390. doi: 10.5555/3241189.3241296.
|
[43] |
HOLLAND J K and HOPPER N. RegulaTor: A straightforward website fingerprinting defense[J]. Proceedings on Privacy Enhancing Technologies, 2022, 2022(2): 344–362. doi: 10.2478/popets-2022-0049.
|
[44] |
LIANG Jingyuan, YU Chansu, SUH K, et al. Tail time defense against website fingerprinting attacks[J]. IEEE Access, 2022, 10: 18516–18525. doi: 10.1109/ACCESS.2022.3146236.
|
[45] |
GOODFELLOW I J, SHLENS J, and SZEGEDY C. Explaining and harnessing adversarial examples[C]. The 3rd International Conference on Learning Representations, San Diego, USA, 2015.
|
[46] |
RAHMAN M S, IMANI M, MATHEWS N, et al. Mockingbird: Defending against deep-learning-based website fingerprinting attacks with adversarial traces[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 1594–1609. doi: 10.1109/TIFS.2020.3039691.
|
[47] |
HOU Chengshang, GOU Gaopeng, SHI Junzheng, et al. WF-GAN: Fighting back against website fingerprinting attack using adversarial learning[C]. The IEEE Symposium on Computers and Communications, Rennes, France, 2020: 1–7. doi: 10.1109/ISCC50000.2020.9219593.
|
[48] |
GONG Jiajun, ZHANG Wuqi, ZHANG C, et al. Surakav: Generating realistic traces for a strong website fingerprinting defense[C]. The IEEE Symposium on Security and Privacy, San Francisco, USA, 2022: 1558–1573. doi: 10.1109/SP46214.2022.9833722.
|
[49] |
NASR M, BAHRAMALI A, and HOUMANSADR A. Defeating DNN-based traffic analysis systems in real-time with blind adversarial perturbations[C]. The 30th USENIX Security Symposium, Vancouver, Canada, 2021: 2705–2722.
|
[50] |
LI Ding, ZHU Yuefei, CHEN Minghao, et al. Minipatch: Undermining DNN-based website fingerprinting with adversarial patches[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 2437–2451. doi: 10.1109/TIFS.2022.3186743.
|
[51] |
QIAO Litao, WU Bang, YIN Shuijun, et al. Resisting DNN-based website fingerprinting attacks enhanced by adversarial training[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 5375–5386. doi: 10.1109/TIFS.2023.3304528.
|
[52] |
GU Xiaodan, SONG Bingchen, LAN Wei, et al. An online website fingerprinting defense based on the non-targeted adversarial patch[J]. Tsinghua Science and Technology, 2023, 28(6): 1148–1159. doi: 10.26599/TST.2023.9010062.
|
[53] |
GONG Jiajun, ZHANG Wuqi, ZHANG C, et al. WFDefProxy: Real world implementation and evaluation of website fingerprinting defenses[J]. IEEE Transactions on Information Forensics and Security, 2024, 19: 1357–1371. doi: 10.1109/TIFS.2023.3327662.
|
[54] |
XIAO Xi, ZHOU Xiang, YANG Zhenyu, et al. A comprehensive analysis of website fingerprinting defenses on Tor[J]. Computers & Security, 2024, 136: 103577. doi: 10.1016/J.COSE.2023.103577.
|
[55] |
WRIGHT C V, COULL S E, and MONROSE F. Traffic morphing: An efficient defense against statistical traffic analysis[C]. The 16th Network and Distributed System Security Symposium, San Diego, USA, 2009.
|
[56] |
DE LA CADENA W, MITSEVA A, HILLER J, et al. TrafficSliver: Fighting website fingerprinting attacks with traffic splitting[C]. The 2020 ACM SIGSAC Conference on Computer and Communications Security, Orlando, USA, 2020: 1971–1985. doi: 10.1145/3372297.3423351.
|
[57] |
LIU Ling, HU Ning, SHAN Chun, et al. SMART: A lightweight and reliable multi-path transmission model against website fingerprinting attacks[J]. Electronics, 2023, 12(7): 1668. doi: 10.3390/electronics12071668.
|
[58] |
JUAREZ M, AFROZ S, ACAR G, et al. A critical evaluation of website fingerprinting attacks[C]. The 2014 ACM SIGSAC Conference on Computer and Communications Security, Scottsdale, USA, 2014: 263–274. doi: 10.1145/2660267.2660368.
|
[59] |
AMINUDDIN M A I M, ZAABA Z F, SAMSUDIN A, et al. The rise of website fingerprinting on Tor: Analysis on techniques and assumptions[J]. Journal of Network and Computer Applications, 2023, 212: 103582. doi: 10.1016/j.jnca.2023.103582.
|
[60] |
Al-NAAMI K, CHANDRA S, MUSTAFA A, et al. Adaptive encrypted traffic fingerprinting with bi-directional dependence[C]. The 32nd Annual Conference on Computer Security Applications, Los Angeles, USA, 2016: 177–188. doi: 10.1145/2991079.2991123.
|
[61] |
ATTARIAN R and HASHEMI S. Investigating the streaming algorithms usage in website fingerprinting attack against Tor privacy enhancing technology[C]. The 16th International ISC (Iranian Society of Cryptology) Conference on Information Security and Cryptology, Mashhad, Iran, 2019: 33–38. doi: 10.1109/ISCISC48546.2019.8985162.
|
[62] |
PFAHRINGER B, HOLMES G, and KIRKBY R. New options for hoeffding trees[C]. The 20th Australian Joint Conference on Artificial Intelligence, Gold Coast, Australia, 2007: 90–99. doi: 10.1007/978-3-540-76928-6_11.
|
[63] |
HULTEN G, SPENCER L, and DOMINGOS P. Mining time-changing data streams[C]. The Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, USA, 2001: 97–106. doi: 10.1145/502512.502529.
|
[64] |
OZA N C and RUSSELL S J. Online bagging and boosting[C]. The Eighth International Workshop on Artificial Intelligence and Statistics, Key West, USA, 2001: 229–236.
|
[65] |
MANAPRAGADA C, WEBB G I, and SALEHI M. Extremely fast decision tree[C]. The 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 2018: 1953–1962. doi: 10.1145/3219819.3220005.
|
[66] |
ATTARIAN R, ABDI L, and HASHEMI S. AdaWFPA: Adaptive online website fingerprinting attack for tor anonymous network: A stream-wise paradigm[J]. Computer Communications, 2019, 148: 74–85. doi: 10.1016/j.comcom.2019.09.008.
|
[67] |
WANG Yanbin, XU Haitao, GUO Zhenhao, et al. SnWF: Website fingerprinting attack by ensembling the snapshot of deep learning[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 1214–1226. doi: 10.1109/TIFS.2022.3158086.
|
[68] |
SIRINAM P, MATHEWS N, RAHMAN M S, et al. Triplet fingerprinting: More practical and portable website fingerprinting with N-shot learning[C]. The 2019 ACM SIGSAC Conference on Computer and Communications Security, London, UK, 2019: 1131–1148. doi: 10.1145/3319535.3354217.
|
[69] |
CHEN Mantun, WANG Yongjun, and ZHU Xiatian. Few-shot website fingerprinting attack with meta-bias learning[J]. Pattern Recognition, 2022, 130: 108739. doi: 10.1016/j.patcog.2022.108739.
|
[70] |
ZHOU Qiang, WANG Liangmin, ZHU Huijuan, et al. Few-shot website fingerprinting attack with cluster adaptation[J]. Computer Networks, 2023, 229: 109780. doi: 10.1016/j.comnet.2023.109780.
|
[71] |
CHEN Yongxin, WANG Yongjun, and YANG Luming. SRP: A microscopic look at the composition mechanism of website fingerprinting[J]. Applied Sciences, 2022, 12(15): 7937. doi: 10.3390/app12157937.
|
[72] |
KARUNANAYAKE I, JIANG Jiaojiao, AHMED N, et al. Exploring uncharted waters of website fingerprinting[J]. IEEE Transactions on Information Forensics and Security, 2024, 19: 1840–1854. doi: 10.1109/TIFS.2023.3342607.
|
[73] |
SHEN Meng, JI Kexin, GAO Zhenbo, et al. Subverting website fingerprinting defenses with robust traffic representation[C]. The 32th USENIX Security Symposium, Anaheim, USA, 2023: 607–624.
|